搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究

郑鹏飞 柳志旭 王超 刘卫芳

引用本文:
Citation:

基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究

郑鹏飞, 柳志旭, 王超, 刘卫芳

First principles study on polarization and piezoelectric properties of group substitution regulated lead-free organic perovskite ferroelectrics

Zheng Peng-Fei, Liu Zhi-Xu, Wang Chao, Liu Wei-Fang
PDF
HTML
导出引用
  • 随着可穿戴电子产品要求提升, 无毒的有机钙钛矿铁电体成为潜在候选材料. 本工作应用第一性原理计算系统研究了无铅有机钙钛矿A-NH4-(PF6)3 (A = MDABCO, CNDABCO, ODABCO, NODABCO, SHDABCO)的电子态密度、自发极化、弹性特性和压电效应. 通过分子动力学和结合能计算发现, 有机钙钛矿在室温下具有稳定性且预测其在实验上易于合成. 对电子态密度研究发现, A-NH4-(PF6)3的价带主要来自F元素的贡献, 价带顶和导带底分别来自取代基团中的元素和N元素的贡献, 因此有利于电子-空穴对的分离. 依据Born稳定性判据, 有机钙钛矿具有稳定的机械性质. 除此之外, A位有机阳离子的取代基团可以改变材料中氢键的数量, 对总铁电极化的贡献有着明显影响. 最后通过压电性能计算, 揭示了有机钙钛矿具有良好的压电效果, 该效应源于材料引入的有机阳离子增加的材料的柔性. 计算结果为后续实验提供了理论基础.
    Organic ferroelectrics are desirable for the applications in the field of wearable electronics due to their eco-friendly process-ability, mechanical flexibility, low processing temperatures, and lightweight. In this work, we use five organic groups as substitution for organic cation and study the effects of organic cations on the structural stability, electronic structure, mechanical properties and spontaneous polarization of metal-free perovskite A-NH4-(PF6)3 (A = MDABCO, CNDABCO, ODABCO, NODABCO, SHDABCO) through first-principles calculations. Firstly, the stabilities of the five materials are calculated by molecular dynamics simulations, and the energy values of all systems are negative and stable after 500 fs, which demonstrates the stabilities of the five materials at 300 K. The electronic structure calculation shows that the organic perovskite materials have wide band gap with a value of about 7.05 eV. The valence band maximum (VBM) and Cconduction band minimum (CBM) are occupied by different elements, which is conductive to the separation of electrons and holes. We find that organic cations have an important contribution to the spontaneous polarization of materials, with a contribution rate over 50%. The presence of hydrogen atoms in the substituting groups (MDABCO, ODABCO) enhances the hydrogen bond interaction between the organic cations and ${\rm PF}_6^- $ and increases the displacement of the organic cation, resulting in an increase in the contribution of the polarization of the organic cation to the total polarization. In addition, we observe large piezoelectric strain components, the calculated value of d33 is 36.5 pC/N for CNDABCO-NH4-(PF6)3, 32.3 pC/N for SHNDABCO-NH4-(PF6)3, which is larger than the known value of d33 of MDABCO-NH4-I3(14pC/N). The calculated value of d14 is 57.5 pC/N for ODABCO-NH4-(PF6)3, 27.5 pC/N for NODABCO-NH4-(PF6)3. These components are at a high level among known organic perovskite materials and comparable to many known inorganic crystals. The large value of d14 is found to be closely related to the large value of elastic compliance tensor s44. The analysis of Young’s modulus and bulk’s modulus shows that these organic perovskite materials have good ductility. These results indicate that these organic materials are excellent candidates for future environmentally friendly piezoelectric materials.
      通信作者: 刘卫芳, wfliu@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51572193)资助的课题.
      Corresponding author: Liu Wei-Fang, wfliu@tju.edu.cn
    • Funds: Project support by the National Natural Science Foundation of China (Grant No. 51572193).
    [1]

    Kieslich G, Sun S J, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar

    [2]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829Google Scholar

    [3]

    Bechmann R 2005 J. Acoust. Soc. Am. 28 347Google Scholar

    [4]

    Haertling G H 1999 J. Am. Cera. Soc. 82 797Google Scholar

    [5]

    Zhao Y X, Zhu K 2016 Chem. Soc. Rev. 45 655Google Scholar

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [7]

    Peña M A, Fierro J 2001 Chem. Rev. 101 1981Google Scholar

    [8]

    郑隆立, 齐世超, 王春明, 石磊, 2019 物理学报 68 147701Google Scholar

    Zheng L L, Qi S C, Wang C M, Shi L 2019 Acta Phys. Sin. 68 147701Google Scholar

    [9]

    Neaten J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 14111Google Scholar

    [10]

    Lebeugle D, Colson D, Forget A, Viret M 2007 Appl. Phys. Lett. 91 22907Google Scholar

    [11]

    Palkar V R, Kundaliya D C, Malik S K 2003 J. Appl. Phys. 93 4337Google Scholar

    [12]

    Gao W X, Chang L, Ma H, You L, Yin J, Liu J M, Liu Z G, Wang J L, Yuan G L 2015 NPG Asia Mater. 7 e189Google Scholar

    [13]

    Xu W J, Kopyl S, Kholkin A, Rocha J 2019 Coordin. Chem. Rev. 387 398Google Scholar

    [14]

    Nandi P, Topwal D, Park N G, Shin H 2020 J. Phys. D: Appl. Phys. 53 493002Google Scholar

    [15]

    Köhnen E, Jost M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B, Schlatmann R, Stannowski B, Albrecht S 2019 Sustain. Energ. Fuels 3 1995Google Scholar

    [16]

    Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820Google Scholar

    [17]

    Yang W S, Park B, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [18]

    Yun J S, Park C K, Jeong Y H, Cho J H, Paik J, Yoon S H, Hwang K 2016 Nanomater. Nanotechno. 6 20Google Scholar

    [19]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

    [20]

    Fu D W, Cai H L, Liu Y M, Ye Q, Zhang W, Zhang Y, Chen X Y, Giovannetti G, Capone M, Li J Y, Xiong R G 2013 Science 339 425Google Scholar

    [21]

    Wang H, Liu H H, Zhang Z Y, Liu Z H, Lv Z L, Li T W, Ju W W, Li H S, Cai X W, Han H 2019 npj Comput. Mater 5 17Google Scholar

    [22]

    Wu H S, Wei S, Chen S W, Pan H C, Pan W P, Huang S, Tsai M, Yang P 2022 Adv. Sci. 9 2105974Google Scholar

    [23]

    Choi H S, Li S N, Park I, Liew W H, Zhu Z Y, Kwon K C, Wang L, Oh I, Zheng S S, Su C L, Xu Q H, Yao K, Pan F, Loh K P 2022 Nat. Commun. 13 794Google Scholar

    [24]

    Sun M J, Zheng C, Gao Y, Johnston A, Najarian A M, Wang P X, Voznyy O, Hoogland S, Sargent E H 2021 Adv. Mater. 33 2006368Google Scholar

    [25]

    Kasel T W, Deng Z Y, Mroz A M, Hendon C H, Butler K T, Canepa P 2019 Chem. Sci. 10 8187Google Scholar

    [26]

    Kresse, Furthmuller 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Kresse, Hafner 1994 Phys. Review. B 49 14251Google Scholar

    [28]

    Kresse, Hafner 1993 Phys. Review. B 47 558Google Scholar

    [29]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [30]

    Li Z Z, Li Z H, Peng G Q, Shi C, Wang H X, Ding S Y, Wang Q, Liu Z T, Jin Z W 2023 Adv. Mater. 35 2300480Google Scholar

    [31]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 48 4442Google Scholar

    [32]

    Vanderbilt D, King-Smith R D 1993 Phys. Rev. B 47 1651Google Scholar

    [33]

    Wang X M, Yan Y F 2022 arXiv: 2206.11137v1 [cond-mat. mtrl-sci]

    [34]

    Singh J, Kaur H, Singh G, Tripathi S K 2021 Mater. Today Energy 21 100820Google Scholar

    [35]

    Al-Qaisi S, Rai D P, Haq B U, Ahmed R, Vu T V, Khuili M, Tahir S A, Alhashim H H 2021 Mater. Chem. Phys. 258 123945Google Scholar

    [36]

    Kiely E, Zwane R, Fox R, Reilly A M, Guerin S 2021 CrystEngComm 23 5697Google Scholar

    [37]

    Mouhat F, Coudert F 2014 Phys. Rev. B 90 224104Google Scholar

    [38]

    Haid S, Bouadjemi B, Houari M, Matougui M, Lantri T, Bentata S, Aziz Z 2019 Solid State Commun. 294 29Google Scholar

    [39]

    Birch F 1938 J. Appl. Phys. 9 279Google Scholar

    [40]

    Kholil M I, Bhuiyan M T H 2020 Solid State Commun. 322 114053Google Scholar

    [41]

    Crisler D F, Cupal J J, Moore A R 1968 P. IEEE 56 225Google Scholar

    [42]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191Google Scholar

    [43]

    Joffe H, Berlincourt D, Krueger H, Shiozawa L 1960 14th Annual Symposium on Frequency Control Atlantic City, NJ, USA May 21–June 2 1960 p19

    [44]

    Vanderbilt D, Hamann D R, Wu X F 2005 Phys. Rev. B 72 35105Google Scholar

    [45]

    X Y H 1991 Ferroelectric Materials and Their Applications (Netherlands: Amsterdam

    [46]

    Li F L, Tian S W, Wu G D, Jiang C, Wu F P, Zhao X 2019 Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China, November 1–4, 2019 p1

    [47]

    Guy I L, Muensit S, Goldys E M 1999 Appl. Phys. Lett. 75 4133Google Scholar

    [48]

    Irzhak D, Roshchupkin D, Fahrtdinov R 2012 Proceedings of ISAF-ECAPD-PFM 2012 Aveiro, Portugal, July 9–13 2012 p1

  • 图 1  甲基替换H原子打破阳离子对称性

    Fig. 1.  Replacing H atoms with methyl groups to break cation symmetry.

    图 2  (a) MDABCO2+, ${\mathrm{NH}}_4^+ $, ${\text{PF}}_6^ - $结构示意图; (b) 沿a轴观察的MDABCO-NP3的原胞; (c) 不同基团取代之后的阳离子; (d) MDABCO-NP3的原胞; (e)沿着[111]方向观察到的MDABCO-NP3的原胞; (f) 沿a轴观察的MDABCO-NP3的晶胞

    Fig. 2.  (a) Structures of MDABCO2+, ${\mathrm{NH}}_4^+ $, ${\text{PF}}_6^ - $ components; (b) the primitive cell of MDABCO-NP3 viewed along the a-axis; (c) cations substituted with different functionalities; (d) the primitive cell of MDABCO-NP3; (e) the primitive cell of MDABCO-NP3 viewed along [111] direction; (f) the unit cell of MDABCO-NP3 viewed along a-axis.

    图 3  (a) A-NP3的结合能; (b) A-NP3在300 K条件下的分子动力学模拟

    Fig. 3.  (a) Binding energy of A-NP3; (b) molecular dynamics simulation of A-NP3 under 300 K conditions.

    图 4  (a) 5种材料的总态密度; (b)—(f)分别为NODABCO-NP3, SHDABCO-NP3, ODABCO-NP3, CNDABCO-NP3, MDABCO-NP3的投影态密度 ; 费米能级设置为0 eV

    Fig. 4.  (a) Total density of states for A-NP3; (b)–(f) projected density of states of (b) NODABCO-NP3, (c) SHDABCO-NP3, (d) ODABCO-NP3, (e) CNDABCO-NP3, (f) MDABCO-NP3. Fermi level is set to zero.

    图 5  R3到+R3结构的转变过程 (a) –R3铁电相 (λ = –1)结构; (b)中间相变结构(λ =0); (c) +R3铁电相(λ = 1)结构; (d) 类反铁电($ {\lambda }' = -1$)结构

    Fig. 5.  Transformation of –R3 to +R3 structure: (a) –R3 ferroelectric phase (λ = –1) structure; (b) intermediate phase transition structure (λ = 0); (c) +R3 ferroelectric phase (λ = 1) structure; (d) quasi-antiferroelectric phase structure ($ {\lambda }' =-1$).

    图 6  计算的(a) MDABCO-NP3, (b) SHDABCO-NP3, (c) NODABCO-NP3, (d) ODABCO- NP3, (e) CNDABCO-NP3的经极化量子数修正的和未修正的极化值; (f) 5种材料总的极化值

    Fig. 6.  Calculated polarization value of (a) MDABCO-NP3, (b) SHDABCO-NP3, (c) NODABCO-NP3, (d) ODABCO-NP3, (e) CNDABCO-NP3 with and without correction for polarization quantum; (f) the total polarization values of five materials.

    图 7  体系的差分电荷密度 (a) MDABCO-NP3; (b) SHDABCO-NP3; (c) NODABCO-NP3; (d) OHDABCO-NP3; (e) CNDABCO-NP3

    Fig. 7.  Differential charge density distribution of differ systems: (a) MDABCO-NP3; (b) SHDABCO-NP3; (c) NODABCO-NP3; (d) OHDABCO-NP3; (e) CNDABCO-NP3.

    图 8  计算的 A-NP3的(a) 压电应变张量和(b) 压电应力张量

    Fig. 8.  Calculated piezoelectric strain (a) and stress (b) tensor of A-NP3.

    表 1  采用PBE和PBE+D3方法优化后的A-NP3的晶格结构参数

    Table 1.  Structural optimization of A-NP3 by using PBE and PBE+D3 methods.

    Material Method a α/(°) V3
    MDABCO-NP3 PBE 7.89(0.57%) 84.91(0.06%) 485.51
    PBE+D3 7.73(–1.46%) 84.55(–0.36%) 478.25
    Exp 7.84 84.86 496.46
    SHDABCO-NP3 PBE 7.93 83.84 489.86
    PBE+D3 7.74 83.18 483.46
    NODABCO-NP3 PBE 7.95 83.74 493.15
    PBE+D3 7.84 81.25 485.65
    ODABCO-NP3 PBE 7.85 85.2 478.75
    PBE+D3 7.75 83.65 475.21
    CNDABCO-NP3 PBE 10.58 85.21 477.19
    PBE+D3 9.28 83.48 486.48
    下载: 导出CSV

    表 2  A位阳离子的极化PA (μC/cm2)和材料的总极化PS (μC/cm2)及阳离子的极化对总极化的贡献PA/PS

    Table 2.  Polarization of A-site cations (PA) and total polarization of materials (PS) and the contribution of cation polarization to total polarization (PA/PS).

    Materials PA PS PA/PS
    SHDABCO-NP3 2.4 3.8 0.64
    NODABCO-NP3 2.6 4.2 0.63
    ODABCO-NP3 4.3 6.0 0.71
    MDABCO-NP3 4.3 6.3 0.68
    CNDABCO-NP3 5.7 9.4 0.61
    下载: 导出CSV

    表 3  计算的A-NP3的弹性刚度张量Cij、体积模量B、剪切模量G、杨氏模量E (GPa)、皮尤比(B/G)和泊松比$ \nu $

    Table 3.  Calculated elastic tensor coefficients Cij , bulk modulu B, shear modulu G, Young’s modulu E(GPa), Pugh’s and Poisson’s ratios of A-NP3.

    Materials C11 C33 C44 C12 C13 C14 C25 B G E B/G ν
    MDABCO-NP3 32.9 15.9 8.2 15.9 16.3 0.8 0.1 21.4 8.2 21.8 2.6 0.3
    ODABCO-NP3 21.9 7.2 6.7 7.2 14.4 0.2 0.4 18.4 3.6 10.2 2.8 0.3
    CNDABCO-NP3 35.2 19.4 6.6 19.4 22.8 0.6 1.3 25.7 6.7 18.4 4.0 0.4
    SHDABCO-NP3 32.4 21.8 8.6 21.8 24.1 4.8 4.4 25.9 7.3 20.1 4.1 0.4
    NODABCO-NP3 36.2 19.7 4.4 19.7 19.7 0.3 0.4 25.0 5.9 16.5 4.5 0.4
    下载: 导出CSV

    表 7  代表性无机、有机压电体对CNDABCO-NP3和SHDABCO-NP3的压电分量d33的对比.

    Table 7.  Comparison of piezoelectric component d33 of representative inorganic, organic piezoelectrics to CNDABCO-NP3 and SHDABCO-NP3.

    Materialsd33/(pC·N–1)
    ZnS[41]3.2
    LiNbO3, LN[42]6.0
    CdS[43]10.3
    ZnO[44]12.4
    MDABCO-NI3[19]14.4
    CNDABCO-NP336.5
    SHDABCO-NP332.3
    下载: 导出CSV

    表 8  代表性无机、有机压电体对MDABCO-NP3, NODABCO-NP3 和ODABCO-NP3的压电分量d14的对比

    Table 8.  Comparison of piezoelectric component d14 of representative inorganic, organic piezoelectrics to MDABCO-NP3, NODABCO-NP3 and ODABCO-NP3.

    Materialsd14/(pC·N–1)
    NaClO3[45]1.7
    La3Ga5.5Ta0.5O14, LGT[46]5.0
    GaN[47]6.4
    AlN[47]9.7
    Ca3TaGa3Si2O14, CTGS[48]24.3
    MDABCO-NP36.3
    NODABCO-NP327.5
    ODABCO-NP357.5
    下载: 导出CSV

    表 4  A-NP3的压电应变张量dij (pC/N)

    Table 4.  Piezoelectric strain tensor dij of A-NP3 (pC/N).

    Materialsd11d22d33d14d15d31
    MDABCO-NP3–2.9–2.62.0–6.3–1.03.0
    ODABCO-NP3–5.5–0.97.4–57.5–28.90.9
    CNDABCO-NP3–1.3–2.736.5–7.9–1.617.0
    SHDABCO-NP3–18.2–20.932.3–10.6–41.627.2
    NODABCO-NP3–0.8–0.47.127.5–21.86.18
    下载: 导出CSV

    表 5  A-NP3的压电应力张量eij (C/m2)

    Table 5.  Piezoelectric stress tensor eij of A-NP3 (C/m2).

    Materialse11e22e33e14e15e31
    MDABCO-NP3–3.5–3.02.44.5–0.64.9
    ODABCO-NP3–2.1–0.53.58.1–1.79.9
    CNDABCO-NP3–1.9–4.734.74.7–0.89.7
    SHDABCO-NP3–5.2–6.67.34.3–21.96.5
    NODABCO-NP3–1.6–0.510.58.9–10.716.8
    下载: 导出CSV

    表 6  A-NP3的柔性刚度张量sij (10–12 m/N).

    Table 6.  Elastic compliance tensor sij of A-NP3 (10–12 m/N).

    Materials s11 s33 s44 s12 s13 s14 s25
    MDABCO-NP3 48.8 49.8 130.3 –16.8 –16.7 3.2 0.6
    ODABCO-NP3 38.4 57.2 247.3 –9.0 –17.6 18 45.5
    CNDABCO-NP3 56.9 85.4 157.3 –8.8 –35.7 –5.5 13.3
    SHDABCO-NP3 124.7 142.4 218.9 –37.0 –79.2 –60.1 5.0
    NODABCO-NP3 46.8 51.2 199.0 –16.6 –17.2 17.1 19.9
    下载: 导出CSV
  • [1]

    Kieslich G, Sun S J, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar

    [2]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829Google Scholar

    [3]

    Bechmann R 2005 J. Acoust. Soc. Am. 28 347Google Scholar

    [4]

    Haertling G H 1999 J. Am. Cera. Soc. 82 797Google Scholar

    [5]

    Zhao Y X, Zhu K 2016 Chem. Soc. Rev. 45 655Google Scholar

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [7]

    Peña M A, Fierro J 2001 Chem. Rev. 101 1981Google Scholar

    [8]

    郑隆立, 齐世超, 王春明, 石磊, 2019 物理学报 68 147701Google Scholar

    Zheng L L, Qi S C, Wang C M, Shi L 2019 Acta Phys. Sin. 68 147701Google Scholar

    [9]

    Neaten J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 14111Google Scholar

    [10]

    Lebeugle D, Colson D, Forget A, Viret M 2007 Appl. Phys. Lett. 91 22907Google Scholar

    [11]

    Palkar V R, Kundaliya D C, Malik S K 2003 J. Appl. Phys. 93 4337Google Scholar

    [12]

    Gao W X, Chang L, Ma H, You L, Yin J, Liu J M, Liu Z G, Wang J L, Yuan G L 2015 NPG Asia Mater. 7 e189Google Scholar

    [13]

    Xu W J, Kopyl S, Kholkin A, Rocha J 2019 Coordin. Chem. Rev. 387 398Google Scholar

    [14]

    Nandi P, Topwal D, Park N G, Shin H 2020 J. Phys. D: Appl. Phys. 53 493002Google Scholar

    [15]

    Köhnen E, Jost M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B, Schlatmann R, Stannowski B, Albrecht S 2019 Sustain. Energ. Fuels 3 1995Google Scholar

    [16]

    Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820Google Scholar

    [17]

    Yang W S, Park B, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [18]

    Yun J S, Park C K, Jeong Y H, Cho J H, Paik J, Yoon S H, Hwang K 2016 Nanomater. Nanotechno. 6 20Google Scholar

    [19]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

    [20]

    Fu D W, Cai H L, Liu Y M, Ye Q, Zhang W, Zhang Y, Chen X Y, Giovannetti G, Capone M, Li J Y, Xiong R G 2013 Science 339 425Google Scholar

    [21]

    Wang H, Liu H H, Zhang Z Y, Liu Z H, Lv Z L, Li T W, Ju W W, Li H S, Cai X W, Han H 2019 npj Comput. Mater 5 17Google Scholar

    [22]

    Wu H S, Wei S, Chen S W, Pan H C, Pan W P, Huang S, Tsai M, Yang P 2022 Adv. Sci. 9 2105974Google Scholar

    [23]

    Choi H S, Li S N, Park I, Liew W H, Zhu Z Y, Kwon K C, Wang L, Oh I, Zheng S S, Su C L, Xu Q H, Yao K, Pan F, Loh K P 2022 Nat. Commun. 13 794Google Scholar

    [24]

    Sun M J, Zheng C, Gao Y, Johnston A, Najarian A M, Wang P X, Voznyy O, Hoogland S, Sargent E H 2021 Adv. Mater. 33 2006368Google Scholar

    [25]

    Kasel T W, Deng Z Y, Mroz A M, Hendon C H, Butler K T, Canepa P 2019 Chem. Sci. 10 8187Google Scholar

    [26]

    Kresse, Furthmuller 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Kresse, Hafner 1994 Phys. Review. B 49 14251Google Scholar

    [28]

    Kresse, Hafner 1993 Phys. Review. B 47 558Google Scholar

    [29]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [30]

    Li Z Z, Li Z H, Peng G Q, Shi C, Wang H X, Ding S Y, Wang Q, Liu Z T, Jin Z W 2023 Adv. Mater. 35 2300480Google Scholar

    [31]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 48 4442Google Scholar

    [32]

    Vanderbilt D, King-Smith R D 1993 Phys. Rev. B 47 1651Google Scholar

    [33]

    Wang X M, Yan Y F 2022 arXiv: 2206.11137v1 [cond-mat. mtrl-sci]

    [34]

    Singh J, Kaur H, Singh G, Tripathi S K 2021 Mater. Today Energy 21 100820Google Scholar

    [35]

    Al-Qaisi S, Rai D P, Haq B U, Ahmed R, Vu T V, Khuili M, Tahir S A, Alhashim H H 2021 Mater. Chem. Phys. 258 123945Google Scholar

    [36]

    Kiely E, Zwane R, Fox R, Reilly A M, Guerin S 2021 CrystEngComm 23 5697Google Scholar

    [37]

    Mouhat F, Coudert F 2014 Phys. Rev. B 90 224104Google Scholar

    [38]

    Haid S, Bouadjemi B, Houari M, Matougui M, Lantri T, Bentata S, Aziz Z 2019 Solid State Commun. 294 29Google Scholar

    [39]

    Birch F 1938 J. Appl. Phys. 9 279Google Scholar

    [40]

    Kholil M I, Bhuiyan M T H 2020 Solid State Commun. 322 114053Google Scholar

    [41]

    Crisler D F, Cupal J J, Moore A R 1968 P. IEEE 56 225Google Scholar

    [42]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191Google Scholar

    [43]

    Joffe H, Berlincourt D, Krueger H, Shiozawa L 1960 14th Annual Symposium on Frequency Control Atlantic City, NJ, USA May 21–June 2 1960 p19

    [44]

    Vanderbilt D, Hamann D R, Wu X F 2005 Phys. Rev. B 72 35105Google Scholar

    [45]

    X Y H 1991 Ferroelectric Materials and Their Applications (Netherlands: Amsterdam

    [46]

    Li F L, Tian S W, Wu G D, Jiang C, Wu F P, Zhao X 2019 Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China, November 1–4, 2019 p1

    [47]

    Guy I L, Muensit S, Goldys E M 1999 Appl. Phys. Lett. 75 4133Google Scholar

    [48]

    Irzhak D, Roshchupkin D, Fahrtdinov R 2012 Proceedings of ISAF-ECAPD-PFM 2012 Aveiro, Portugal, July 9–13 2012 p1

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算. 物理学报, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [5] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [6] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [7] 吴孔平, 齐剑, 彭波, 汤琨, 叶建东, 朱顺明, 顾书林. 第一性原理的广义梯度近似+U方法的纤锌矿Zn1-xMgxO极化特性与Zn0.75Mg0.25O/ZnO 界面能带偏差研究. 物理学报, 2015, 64(18): 187304. doi: 10.7498/aps.64.187304
    [8] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [9] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [10] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [11] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [12] 孙转兰, 张晓青, 曹功勋, 王学文, 夏钟福. 有序结构氟聚合物压电驻极体的制备和压电性研究. 物理学报, 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [13] 张晓青, 黄金峰, 王学文, 夏钟福. 聚四氟乙烯和氟化乙丙烯共聚物复合膜的压电性. 物理学报, 2009, 58(5): 3525-3531. doi: 10.7498/aps.58.3525
    [14] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [15] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [16] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [17] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [18] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响. 物理学报, 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [19] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性. 物理学报, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [20] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善. 物理学报, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
计量
  • 文章访问数:  1635
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-04-02
  • 上网日期:  2024-04-24
  • 刊出日期:  2024-06-20

/

返回文章
返回