搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST装置上电子回旋辐射成像诊断系统的绝对标定方法

裴柏杨 庄革 谢锦林 周乙楠

引用本文:
Citation:

EAST装置上电子回旋辐射成像诊断系统的绝对标定方法

裴柏杨, 庄革, 谢锦林, 周乙楠

Absolute calibration method of electron cyclotron emission imaging system on EAST tokamak

Pei Bo-Yang, Zhuang Ge, Xie Jin-Lin, Zhou Yi-Nan
PDF
HTML
导出引用
  • 电子回旋辐射成像(ECEI)系统可以对托卡马克等离子体芯部极向方向上二维的电子温度剖面的相对扰动进行高时空分辨率的测量. 对ECEI系统进行绝对标定之后, 可以提供二维绝对电子温度剖面及其扰动, 为芯部不稳定性的研究提供实验数据支持. 本文通过衡量锯齿崩塌前后的温度变化来确定锯齿反转面空间位置, 并基于反转面拟合芯部的磁面位置及形状. 根据等离子体平衡时同一磁面对映同一温度的假设, 对ECEI所有通道进行标定, 结果表明ECEI与一维电子回旋辐射仪(ECE)在测量同一位置的等离子体温度时, 其不同时间信号的平均值的相对误差为6%, 并可以有效用于锯齿不稳定性的研究.
    Electron cyclotron emission imaging (ECEI) system can provide the poloidal two-dimensional (2D) relative electron temperature perturbation profile of the core plasma with high spatial and temporal resolution. After absolute calibration of ECEI system, 2D absolute electron temperature profile and its perturbation can be provided. It can provide experimental data support for studying the local heat transport and the evolution of magnetic surface of macro magneto-hydro-dynamics instability. However, due to a large number of measurement channels and the wide measuring area of ECEI diagnostic system, the absolute calibration method in which a blackbody radiation source is used as a standard source, still has technical difficulties.This paper provides an absolute calibration method of ECEI diagnostic system on EAST tokamak, which can cover all the channels of ECEI system. Firstly, the sawtooth inversion surface can be determined by measuring the relative electron temperature change before and after the collapse of the sawtooth. The magnetic surface position and the shape (${S_{{\text{inv}}}}$) of the ECEI measuring area are fitted based on the position and shape of the inversion surface. Then, the one-to-one mapping relationship between laboratory coordinates of each ECEI channel and magnetic surface is obtained. Secondly, according to the assumption that the electron temperature is the same on each magnetic surface in equilibrium, the electron temperature of each magnetic surface is fitted by the electron cyclotron emission (ECE) system result, while the ECE system is absolutely calibrated. The calibration coefficient k(i, j) of each ECEI channel is obtained by comparing with the signal amplitude and the electron temperature on the magnetic surface. The relative error of absolute electron temperature between ECEI and ECE is no more than 6% at the same location.Based on the absolute electron temperature profile provided by ECEI, the motion of the magnetic axis during sawtooth instability can be tracked. It is found that the radial displacement of the magnetic axis occurs followed by the poloidal displacement during sawtooth collapse. This result indicates that after absolute calibration, the ECEI system can provide more abundant information about experimental research.
      通信作者: 庄革, gezhuang@ustc.edu.cn
      Corresponding author: Zhuang Ge, gezhuang@ustc.edu.cn
    [1]

    Hutchinson I H 1987 Principles of Plasma Diagnostics (New York: Cambridge University Press) pp139–144

    [2]

    Sajjad S, Gao X, Ling B, Ti A, Du Q 2008 Meas. Sci. Technol. 19 075701Google Scholar

    [3]

    Liu X, Zhao H L, Liu Y, Li E Z, Han X, Domier C W, Luhmann N C, Ti A, Hu L Q, Zhang X D 2014 Rev. Sci. Instrum. 85 093508Google Scholar

    [4]

    Qian J P, Lao L L, Holcomb C T, Wan B N, Sun Y W, Moreau D, Li E, Zeng L, Hanada K, Garofalo A M, Gong X Z, Shen B, Xiao B J 2017 Nucl. Fusion 57 084001Google Scholar

    [5]

    Nagayama Y, Taylor G, Yamada M, Fredrickson E D, Janos A C, McGuire K M 1996 Nucl. Fusion 36 521Google Scholar

    [6]

    Nagayama Y, Kawahata K, Inagaki S, et al. 2003 Phys. Rev. Lett. 90 205001Google Scholar

    [7]

    Nagayama Y, Taylor G, Fredrickson E D, Budny R V, Janos A C, Mansfield D K, McGuire K M, Yamada M 1996 Phys. Plasmas 3 2631Google Scholar

    [8]

    Park H, Mazzucato E, Munsat T, Domier C W, Johnson M, Luhmann N C, Wang J, Xia Z, Classen I G J, Donné A J H, VanDePol M J 2004 Rev. Sci. Instrum. 75 3787Google Scholar

    [9]

    Park H K, Luhmann N C, Donné A J H, Classen I G J, Domier C W, Mazzucato E, Munsat T, van de Pol M J, Xia Z 2006 Phys. Rev. Lett. 96 195003Google Scholar

    [10]

    Igochine V, Boom J, Classen I, Dumbrajs O, Günter S, Lackner K, Pereverzev G, Zohm H, ASDEX Upgrade Team 2010 Phys. Plasmas 17 122506Google Scholar

    [11]

    Nam Y B, Ko J S, Choe G H, Bae Y, Choi M J, Lee W, Yun G S, Jardin S, Park H K 2018 Nucl. Fusion 58 066009Google Scholar

    [12]

    Choi M J, Yun G S, Lee W, Park H K, Park Y S, Sabbagh S A, Gibson K J, Bowman C, Domier C W, Luhmann N C, Bak J G, Lee S G, the KSTAR Team 2014 Nucl. Fusion 54 083010Google Scholar

    [13]

    Kim G, Yun G S, Woo M, the KSTAR team 2019 Plasma Phys. Control. Fusion 61 055001Google Scholar

    [14]

    Han D Q, Xie J L, Hussain A, Gao B X, Qu C M, Liao W, Xu X H, Gao F X, Li H, Lan T, Liu A, Zhuang G, Liu W D 2018 Rev. Sci. Instrum. 89 10H119Google Scholar

    [15]

    高炳西 2013 博士学位论文 (合肥: 中国科学技术大学)

    Gao B X 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [16]

    Kadomtsev B B 1975 Sov. J. Plasma Phys. 1 389

    [17]

    Powell M J D 1977 Math. Program. 12 241Google Scholar

    [18]

    Holmström K 2008 J. Global Optim. 41(3) 447Google Scholar

    [19]

    Fitzgibbon A, Pilu M, Fisher R B 1999 IEEE Trans. Pattern Anal. Mach. Intell. 21 476Google Scholar

    [20]

    Waltz R E, Miller R L 1999 Phys. Plasmas 6 4265Google Scholar

    [21]

    Luo Z P, Xiao B J, Zhu Y F, Yang F 2010 Plasma Sci. Technol. 12 412Google Scholar

    [22]

    伟森J 著(王文浩 译) 2021 托卡马克(北京: 清华大学出版社)第75—78页

    Wesson J (translated by Wang W H) 2021 Tokamaks (Beijing: Tsinghua University Press) pp75–78

    [23]

    Vezinet D, Igochine V, Weiland M, Yu Q, Gude A, Meshcheriakov D, Sertoli M, the Asdex Upgrade Team, the EUROfusion MST1 Team 2016 Nucl. Fusion 56 086001Google Scholar

  • 图 1  (a) EAST上ECE和ECEI诊断的测量位置在极向截面上的投影(B0 = 1.79 T); (b) EAST上ECE和ECEI诊断的环向位置, 环向角$\phi $相差45°

    Fig. 1.  (a) Projection of ECE and ECEI diagnostic measurement positions on the poloidal cross section on the EAST (B0 = 1.79 T); (b) toroidal location of ECE and ECEI diagnoses on the EAST, with a 45° difference in toroidal angle $\phi $.

    图 2  EAST的42288炮放电数据 (a)黑线为Ip 电流/MA, 红线为ICRH总加热功率; (b)黑线为等离子体储能Wmhd, 红线为等离子体密度${n_{\text{e}}} \times {10^{19}}$; (c) ECEI的第12行、6列通道的幅值Iecei ; (d) ECE的第2个测量通道(R =187 cm)的绝对温度${T_{\text{e}}}$. 图(a)—(d)为1—8.8 s的放电参数随时间变化图, 图(e)—(h)为截取4.85—4.95 s的放电参数随时间变化图, 蓝竖线为选取的判断锯齿反转面时刻

    Fig. 2.  Data of shot 42288 of the EAST: (a) Black line is Ip, plasma current, and the red line is the total power of ICRH; (b) the black line indicates plasma energy storage Wmhd, and the red line indicates plasma density ${n_{\text{e}}} \times {10^{19}}$; (c) the radial value Iecei of the channel in row 12 and column 6 of ECEI; (d) absolute temperature ${T_{\text{e}}}$ of ECE’s second measurement channel (R = 187 cm). The diagram on the panels (a)–(d) show the variation of discharge parameters of 1—8.8 s over time, the diagram on the panels (e)–(h) show the variation of discharge parameters of 4.85—4.95 s over time, and the blue verticals line show the time when the sawtooth inversion surface is given.

    图 3  通过锯齿崩塌过程ECEI扰动数据获取ECEI实验室坐标与等离子体磁面坐标对映关系的流程示意图

    Fig. 3.  Flow diagram of mapping relationship between ECEI laboratory coordinates and plasma magnetic surface coordinates is obtained by using ECEI disturbance data of sawtooth crash process.

    图 4  42288炮的识别反转面结果 (a)—(d)分别对应图2的4条竖线所选取时刻来进行识别

    Fig. 4.  Results identificate inversion surfaces in shot 42288: (a)–(d) Corresponding to the time selected by the four vertical lines in Fig. 2, respectively

    图 5  (a) EAST的42288炮4.90609 s时, 由ECEI锯齿反转面拟合的磁面形状(红线)与EFIT反演的磁面形状(黑虚线)对比; (b) 图(a)的局部放大结果; (c) EFIT反演磁面的沙夫拉诺夫位移随归一化小半径$\rho $的变化, 其中红竖线是ECEI诊断窗口在$\rho $的最大范围

    Fig. 5.  (a) For EAST of 42288 shot 4.90609 s, the shape of the magnetic surface fitted by the ECEI sawtooth inversion surface (red line) is compared with the shape of the EFIT magnetic surface (black dashed line); (b) local magnification of panel (a); (c) change of Shafranov shift of EFIT magnetic surface with normalized small radius $\rho $, where the red vertical line is the maximum range of the ECEI diagnostic window in $\rho $.

    图 6  ECEI实验室坐标与磁面坐标对映的示意图, 将ECE数据插值得到磁面${\psi _1}$位置处(${R_2}, {Z_2}$)的绝对温度, 并使用坐标变换得到同一磁面处的ECEI通道(${R_1}, {Z_1}$), 其中锯齿反转面近似为椭圆, 长轴为${a_0}$, 短轴为${b_0}$, 所处的磁面为${\psi _0}$

    Fig. 6.  Schematic showing the ECEI laboratory coordinates mapping to the magnetic surface coordinates. Interpolate ECE data to obtain the absolute temperature at the magnetic surface ${\psi _1}$ position (${R_2}, {Z_2}$), and then the ECEI channel (${R_1}, {Z_1}$) at the same magnetic surface is obtained by using coordinate transformation. The zigzag inversion surface is approximately an ellipse, the major axis is ${a_0}$, the short axis is ${b_0}$, and the magnetic surface is ${\psi _0}$.

    图 7  EAST的ECEI标定系数, 横纵坐标分别表示ECEI的径向与纵向的道号, 不同颜色为标定的系数大小, 白色为坏道位置

    Fig. 7.  ECEI calibration coefficient of EAST, the horizontal and vertical coordinates represent the radial and vertical channel numbers of ECEI respectively, the color bars represent the value of the calibrated coefficient, and white is the position of the bad track.

    图 8  ECEI标定结果与ECE对比 (a)标定后ECEI所有道与ECE绝对温度的对比; (b)标定后ECEI中心道($j$= 12)与ECE绝对温度的对比

    Fig. 8.  Results of ECEI calibration were compared with those of ECE: (a) Comparison of all ECEI channels and ECE absolute temperatures after calibration; (b) the absolute temperature of ECEI center channel ($j$= 12) compared with ECE after calibration.

    图 9  崩塌期间ECEI芯部位移跟踪结果 (a)基于绝对温度, 用质心法跟踪的芯部的面积范围; (b)不同范围得到的芯部轨迹

    Fig. 9.  Trajectories of ECEI core core movement tracing during sawtooth collapse: (a) Area range of the core tracked by the centroid method based on the absolute temperature; (b) core tracks obtained at different ranges.

  • [1]

    Hutchinson I H 1987 Principles of Plasma Diagnostics (New York: Cambridge University Press) pp139–144

    [2]

    Sajjad S, Gao X, Ling B, Ti A, Du Q 2008 Meas. Sci. Technol. 19 075701Google Scholar

    [3]

    Liu X, Zhao H L, Liu Y, Li E Z, Han X, Domier C W, Luhmann N C, Ti A, Hu L Q, Zhang X D 2014 Rev. Sci. Instrum. 85 093508Google Scholar

    [4]

    Qian J P, Lao L L, Holcomb C T, Wan B N, Sun Y W, Moreau D, Li E, Zeng L, Hanada K, Garofalo A M, Gong X Z, Shen B, Xiao B J 2017 Nucl. Fusion 57 084001Google Scholar

    [5]

    Nagayama Y, Taylor G, Yamada M, Fredrickson E D, Janos A C, McGuire K M 1996 Nucl. Fusion 36 521Google Scholar

    [6]

    Nagayama Y, Kawahata K, Inagaki S, et al. 2003 Phys. Rev. Lett. 90 205001Google Scholar

    [7]

    Nagayama Y, Taylor G, Fredrickson E D, Budny R V, Janos A C, Mansfield D K, McGuire K M, Yamada M 1996 Phys. Plasmas 3 2631Google Scholar

    [8]

    Park H, Mazzucato E, Munsat T, Domier C W, Johnson M, Luhmann N C, Wang J, Xia Z, Classen I G J, Donné A J H, VanDePol M J 2004 Rev. Sci. Instrum. 75 3787Google Scholar

    [9]

    Park H K, Luhmann N C, Donné A J H, Classen I G J, Domier C W, Mazzucato E, Munsat T, van de Pol M J, Xia Z 2006 Phys. Rev. Lett. 96 195003Google Scholar

    [10]

    Igochine V, Boom J, Classen I, Dumbrajs O, Günter S, Lackner K, Pereverzev G, Zohm H, ASDEX Upgrade Team 2010 Phys. Plasmas 17 122506Google Scholar

    [11]

    Nam Y B, Ko J S, Choe G H, Bae Y, Choi M J, Lee W, Yun G S, Jardin S, Park H K 2018 Nucl. Fusion 58 066009Google Scholar

    [12]

    Choi M J, Yun G S, Lee W, Park H K, Park Y S, Sabbagh S A, Gibson K J, Bowman C, Domier C W, Luhmann N C, Bak J G, Lee S G, the KSTAR Team 2014 Nucl. Fusion 54 083010Google Scholar

    [13]

    Kim G, Yun G S, Woo M, the KSTAR team 2019 Plasma Phys. Control. Fusion 61 055001Google Scholar

    [14]

    Han D Q, Xie J L, Hussain A, Gao B X, Qu C M, Liao W, Xu X H, Gao F X, Li H, Lan T, Liu A, Zhuang G, Liu W D 2018 Rev. Sci. Instrum. 89 10H119Google Scholar

    [15]

    高炳西 2013 博士学位论文 (合肥: 中国科学技术大学)

    Gao B X 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [16]

    Kadomtsev B B 1975 Sov. J. Plasma Phys. 1 389

    [17]

    Powell M J D 1977 Math. Program. 12 241Google Scholar

    [18]

    Holmström K 2008 J. Global Optim. 41(3) 447Google Scholar

    [19]

    Fitzgibbon A, Pilu M, Fisher R B 1999 IEEE Trans. Pattern Anal. Mach. Intell. 21 476Google Scholar

    [20]

    Waltz R E, Miller R L 1999 Phys. Plasmas 6 4265Google Scholar

    [21]

    Luo Z P, Xiao B J, Zhu Y F, Yang F 2010 Plasma Sci. Technol. 12 412Google Scholar

    [22]

    伟森J 著(王文浩 译) 2021 托卡马克(北京: 清华大学出版社)第75—78页

    Wesson J (translated by Wang W H) 2021 Tokamaks (Beijing: Tsinghua University Press) pp75–78

    [23]

    Vezinet D, Igochine V, Weiland M, Yu Q, Gude A, Meshcheriakov D, Sertoli M, the Asdex Upgrade Team, the EUROfusion MST1 Team 2016 Nucl. Fusion 56 086001Google Scholar

  • [1] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像. 物理学报, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] 赵子博, 庄革, 谢锦林, 渠承明, 强子薇. 用于等离子体相干模式自动识别的谱聚类算法实现. 物理学报, 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [3] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响. 物理学报, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [4] 王琛, 安红海, 方智恒, 熊俊, 王伟, 孙今人. 软X射线激光背光阴影成像技术的空间分辨研究. 物理学报, 2018, 67(1): 015203. doi: 10.7498/aps.67.20171124
    [5] 王琛, 安红海, 王伟, 方智恒, 贾果, 孟祥富, 孙今人, 刘正坤, 付绍军, 乔秀梅, 郑无敌, 王世绩. 利用软X射线双频光栅剪切干涉技术诊断金等离子体. 物理学报, 2014, 63(12): 125210. doi: 10.7498/aps.63.125210
    [6] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体. 物理学报, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [7] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究. 物理学报, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [8] 邵旭萍, 龚天林, 陈艳, 陈景霞, 陈扬骎, 杨晓华. 不同载气下气体相对电离度的光谱诊断. 物理学报, 2010, 59(3): 1677-1680. doi: 10.7498/aps.59.1677
    [9] 王琛, 郑无敌, 方智恒, 孙今人, 王伟, 熊俊, 傅思祖, 顾援, 王世绩, 乔秀梅, 张国平. X射线激光对激光烧蚀薄片靶的阴影成像研究. 物理学报, 2010, 59(7): 4767-4773. doi: 10.7498/aps.59.4767
    [10] 张继涛, 李岩, 罗志勇. 一种可溯源的光谱椭偏仪标定方法. 物理学报, 2010, 59(1): 186-191. doi: 10.7498/aps.59.186
    [11] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [12] 冉林松, 王红斌, 李向东, 张继彦, 程新路. Ti类氦Kα线在高温稠密等离子体中的漂移. 物理学报, 2009, 58(9): 6096-6100. doi: 10.7498/aps.58.6096
    [13] 王 琛, 方智恒, 孙今人, 王 伟, 熊 俊, 叶君建, 傅思祖, 顾 援, 王世绩, 郑无敌, 叶文华, 乔秀梅, 张国平. 利用X射线激光进行激光等离子体射流的诊断. 物理学报, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [14] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [15] 龚天林, 杨晓华, 李红兵, 韩良恺, 陈扬骎. 分子离子光谱强度与母体分子气体压强的关系. 物理学报, 2004, 53(2): 418-422. doi: 10.7498/aps.53.418
    [16] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定. 物理学报, 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [17] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [18] 董全林, 刘彬. 在伽利略坐标变换下的二端面弹性转轴相似动力学方程. 物理学报, 2002, 51(10): 2191-2196. doi: 10.7498/aps.51.2191
    [19] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
    [20] 余建华, 黄建军. 射频放电阻抗测量用于等离子体诊断研究. 物理学报, 2001, 50(12): 2403-2407. doi: 10.7498/aps.50.2403
计量
  • 文章访问数:  1477
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 修回日期:  2024-05-14
  • 上网日期:  2024-05-25
  • 刊出日期:  2024-07-05

/

返回文章
返回