搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体空位缺陷对氧化铝二次电子发射特性的影响分析

张建威 牛莹 闫润圻 张荣奇 曹猛 李永东 刘纯亮 张嘉伟

引用本文:
Citation:

体空位缺陷对氧化铝二次电子发射特性的影响分析

张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟

Analysis of effect of bulk vacancy defect on secondary electron emission characteristics of Al2O3

Zhang Jian-Wei, Niu Ying, Yan Run-Qi, Zhang Rong-Qi, Cao Meng, Li Yong-Dong, Liu Chun-Liang, Zhang Jia-Wei
PDF
HTML
导出引用
  • 基于第一性原理和蒙特卡罗模拟方法, 系统地研究了氧化铝晶体内部O空位缺陷和Al空位缺陷对二次电子发射特性的影响. 密度泛函计算结果表明, 空位缺陷会导致能带结构发生改变, 其中Al空位缺陷的存在使得禁带宽度变窄, 费米能级降低至价带内部. 在此基础之上, 获得了不同晶体结构下的弹性和非弹性平均自由程. 氧化铝中存在Al空位缺陷时的弹性平均自由程最大, 而存在O空位缺陷时的非弹性平均自由程最大. 为了分析不同缺陷浓度下的二次电子发射特性, 对已有蒙特卡罗模拟算法进一步优化. 模拟结果表明, 随着O空位和Al空位缺陷占比的增加, 最大二次电子发射系数随之而下降. 相比于Al空位缺陷, 相同缺陷占比下O空位缺陷导致二次电子发射系数降低更多.
    Based on the combination of the first-principles and Monte Carlo method, the effect of vacancy defect on secondary electron characteristic of Al2O3 is studied in this work. The density functional theory (DFT) calculation results show that the band structure changes when the vacancy defects exist. The existence of Al vacancy defects results in a decrease in band gap from 5.88 to 5.28 eV, and in Fermi level below the energy of the valence band maximum as well. Besides, the elastic mean free paths and inelastic mean free paths of electrons in different crystal structures are also obtained. The comparison shows that the inelastic mean free path of electrons in Al2O3 with O vacancy defects is much larger than those of Al2O3 without defects and Al2O3 with Al vacancy defects. When the energy of electrons is smaller than 50 eV, the inelastic mean free path of electrons in Al2O3 without defects is longer than that in Al2O3 with Al vacancy defects. The elastic mean free path of electrons slightly increases when the vacancy defects exist, and the elastic mean free path of electrons in Al2O3 with Al vacancy defects is the largest. In order to investigate the secondary electron emission characteristics under different vacancy defect ratios, an optimized Monte Carlo algorithm is proposed. When the ratio between O vacancy defect and Al vacancy defect increases, the simulation results show that the maximum value of secondary electron yield decreases with the ratio of vacancy defect increasing. The existence of O vacancy defects increases the probability of inelastic scattering of electrons, so electrons are difficult to emit from the surface. As a result, comparing with Al vacancy defect, the SEY of Al2O3 decreases greatly under the same ratio of O vacancy defect.
      通信作者: 张建威, zhangjianwei@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52307186)、陕西省自然科学基础研究计划(批准号: 2023-JC-QN-0585)和陕西省教育厅青年创新团队项目(批准号: 23JP104)资助的课题.
      Corresponding author: Zhang Jian-Wei, zhangjianwei@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52307186), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2023-JC-QN-0585), and the Youth Innovation Scientific Research Program of the Education Department of Shaanxi Province, China (Grant No. 23JP104).
    [1]

    Seiler H 1983 J. Appl. Phys. 54 R1Google Scholar

    [2]

    Joe H E, Lee W S, Jun M B G, Park N C, Min B K 2018 Ultramicroscopy 184 37Google Scholar

    [3]

    Chai K, Lu Q, Song Y, Gong X, Li A, Zhang Z 2024 Vacuum 221 112869Google Scholar

    [4]

    Tao S X, Chan H W, Van Der Graaf H 2016 Materials 9 1017Google Scholar

    [5]

    常超 2018 科学通报 63 1390Google Scholar

    Chang C 2018 Chin. Sci. Bull. 63 1390Google Scholar

    [6]

    Hu T C, Zhu S K, Zhao Y N, Sun X, Yang J, He Y, Wang X B, Bai C J, Bai H, Wei H, Cao M, Hu Z Q, Liu M, Cui W Z 2022 Chin. Phys. B 31 047901Google Scholar

    [7]

    Kirby R E, King F K 2001 Nucl. Instrum. Methods Phys. Res. , Sect. A 469 1Google Scholar

    [8]

    林舒, 闫杨娇, 李永东, 刘纯亮 2014 物理学报 63 147902Google Scholar

    Lin S, Yan Y J, Li Y D, Liu C L 2014 Acta Phys. Sin. 63 147902Google Scholar

    [9]

    李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲 2015 物理学报 64 137701Google Scholar

    Li S, Chang C, Wang J G, Liu Y S, Zhu M, Guo L T, Xie J L 2015 Acta Phys. Sin. 64 137701Google Scholar

    [10]

    周前红, 董烨, 董志伟, 周海京 2015 物理学报 64 085201Google Scholar

    Zhou Q H, Dong Y, Dong Z W, Zhou H J 2015 Acta Phys. Sin. 64 085201Google Scholar

    [11]

    He J, Yang J, Zhao W, Long J, Lan C, Liu E, Chen X, Li J, Yang Z, Dong P, Wang T, Shi J 2020 Appl. Surf. Sci. 515 145990Google Scholar

    [12]

    González L A, Larciprete R, Cimino R 2016 AIP Adv. 6 095117Google Scholar

    [13]

    Brillson L J, Foster G M, Cox J, Ruane W T, Jarjour A B, Gao, H, Von Wenckstern H, Grundmann M, Wang B, Look D C, Hyland A, Allen M W 2018 J. Electron. Mater. 47 4980Google Scholar

    [14]

    Sun X L, Goss S H, Brillson L J, Look D C, Molnar R J 2002 J. Appl. Phys. 91 6729Google Scholar

    [15]

    Taha M, Abdelhay R A, Khedr M H 2022 Optik 271 170125Google Scholar

    [16]

    Heo S, Cho E, Lee H I, Park G S, Kang H J, Nagatomi T, Choi P, Choi B D 2015 AIP Adv. 5 077167Google Scholar

    [17]

    Hussain A, Mian S A, Ahmed E, Jang J 2023 J. Mol. Model 29 393Google Scholar

    [18]

    Nguyen H K A, Sanati M, Joshi R P 2019 J. Appl. Phys. 126 123301Google Scholar

    [19]

    李盛涛, 聂永杰, 闵道敏, 潘绍明 2017 电工技术学报 32 1

    Li S T, Nie Y J, Min D M, Pan S M 2017 Trans. Chin. Electrotech. Soc. 32 1

    [20]

    Zhang G J, Su G Q, Song B P, Mu H B 2018 IEEE Trans. Dielectr. Electr. Insul. 25 2321Google Scholar

    [21]

    Wang Y L, Craven M, Yu X T, Ding J, Bryant P, Huang J, Tu X 2019 ACS Catal. 9 10780Google Scholar

    [22]

    Diao Y, Wang H, Chen B, Zhang X, Shi C 2023 Appl. Catal., B 330 122573Google Scholar

    [23]

    Quantum ESPRESSO https://www.quantum-espresso.org/ (accessed 8 March 2023

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [26]

    Hussain A, Yang L H, Zou Y B, Mao S F, Da B, Li H M, Ding Z J 2020 J. Appl. Phys. 128 015305Google Scholar

    [27]

    Yater J E 2023 J. Appl. Phys. 133 050901Google Scholar

    [28]

    Zhang J, Niu Y, Yan R Q, Zhang R Q, Cao M, Li Y D, Liu C L, Zhang J W, Luo W 2024 J. Appl. Phys. 135 013301Google Scholar

    [29]

    Waidmann S, Knupfer M, Arnold B, Fink J, Fleszar A, Hanke W 2000 Phys. Rev. B 61 10149Google Scholar

    [30]

    Polak M P, Morgan D 2021 Comput. Mater. Sci. 193 110281Google Scholar

    [31]

    Drouin D, Hovington P, Gauvin R 1997 Scanning 19 20Google Scholar

    [32]

    Czyżewski Z, MacCallum D O N, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066Google Scholar

    [33]

    Tho T H, Nguyen-Truong H T 2019 J. Phys. Condens. Matter. 31 415901Google Scholar

    [34]

    张朝民, 江勇, 尹登峰, 陶辉锦, 孙顺平, 姚建刚 2016 物理学报 65 076101Google Scholar

    Zhang C M, Jiang Y, Yin D F, Tao H J, Sun S P, Yao J G 2016 Acta Phys. Sin. 65 076101Google Scholar

  • 图 1  Al2O3内部产生缺陷和无缺陷的晶体结构 (a) O空位缺陷; (b) Al空位缺陷; (c) 无缺陷 (灰色原子为Al3+ , 红色原子为O2–, 蓝色圆圈为缺陷原子位置)

    Fig. 1.  Crystal structure of Al2O3 with ideal state and defects: (a) O vacancy defect; (b) Al vacancy defect; (c) ideal state (the gray atoms are Al3+, the red atoms are O2– and the blue circles are the defective atom positions).

    图 2  Al2O3内部存在缺陷和无缺陷时的能带分布

    Fig. 2.  Energy band profile in Al2O3 with and without internal defects.

    图 3  Al2O3存在Al空位缺陷和O空位缺陷情况时, 基于不同方向下动量转移的ELFs (a), (b), (c) O空位缺陷的ELF, 依次为x, y, z方向; (d), (e), (f) Al空位缺陷的ELF, 依次为x, y, z方向. $\left| {\boldsymbol{q}} \right|$的取值为: 0—0.1区间内, 间隔增量为0.005; 0.1—1.5区间内, 间隔增量为0.02; 1.5—5.25区间内, 间隔增量为0.05; 5.25—6.95区间内, 间隔增量为0.1; 7.45—10.95区间内, 间隔增量为0.5. $\left| {\boldsymbol{q}} \right|$以$2\pi /a$为单位, a为晶格常数. 从$\left| {\boldsymbol{q}} \right|$=0开始, 每四个连续$\left| {\boldsymbol{q}} \right|$取一行, 偏移量是–0.01

    Fig. 3.  ELFs based on momentum transfer in different directions when Al2O3 has Al vacancy defect and O vacancy defect: (a), (b), (c) The ELFs of O vacancy defect in x, y, and z directions; (d), (e), (f) the ELFs of Al vacancy defect in x, y, and z directions. The increments of $\left| {\boldsymbol{q}} \right|$ are 0.005 between 0 and 0.1, 0.02 between 0.1 and 1.5, 0.05 between 1.5 and 5.25, 0.1 between 5.25 and 6.95, and 0.5 between 7.45 and 10.95. $\left| {\boldsymbol{q}} \right|$ takes the unit of 2π/a, and a is the lattice parameter. Lines are taken in the order of one for every four successive $\left| {\boldsymbol{q}} \right|$ from $\left| {\boldsymbol{q}} \right|$ = 0 and offset by –0.01.

    图 4  Al2O3在无缺陷、存在O空位缺陷和Al空位缺陷时, 基于不同方向动量转移的电子非弹性平均自由程 (a) x方向; (b) y方向; (c) z方向

    Fig. 4.  Inelastic mean free paths of electrons in Al2O3 in the ideal state, Al vacancy defect and O vacancy defect with momentum transfer in different direction: (a) x-direction; (b) y-direction; (c) z-direction.

    图 5  Al2O3在无缺陷、O空位缺陷和Al空位缺陷情况下的弹性平均自由程

    Fig. 5.  Elastic mean free paths of electrons in Al2O3 under conditions of ideal state, Al vacancy defect and O vacancy defect.

    图 6  蒙特卡罗模拟流程图

    Fig. 6.  A flow chart of Monte Carlo simulation.

    图 7  空位缺陷概率对Al2O3的二次电子发射系数的影响 (a) O空位缺陷; (b)Al空位缺陷

    Fig. 7.  Effect of vacancy defect probability on the secondary electron emission coefficient of Al2O3: (a) O vacancy defect; (b) Al vacancy defect.

    表 1  不同空位缺陷概率对二次电子发射系数的影响

    Table 1.  Effect of different vacancy defect probabilities on the coefficients of secondary electron emission.

    缺陷概率/% O空位缺陷 Al空位缺陷
    W/eV SEY W/eV SEY
    1 440 4.08 460 4.14
    4 460 4.06 460 4.06
    7 440 4.02 460 4.08
    10 440 3.96 420 4.06
    下载: 导出CSV
  • [1]

    Seiler H 1983 J. Appl. Phys. 54 R1Google Scholar

    [2]

    Joe H E, Lee W S, Jun M B G, Park N C, Min B K 2018 Ultramicroscopy 184 37Google Scholar

    [3]

    Chai K, Lu Q, Song Y, Gong X, Li A, Zhang Z 2024 Vacuum 221 112869Google Scholar

    [4]

    Tao S X, Chan H W, Van Der Graaf H 2016 Materials 9 1017Google Scholar

    [5]

    常超 2018 科学通报 63 1390Google Scholar

    Chang C 2018 Chin. Sci. Bull. 63 1390Google Scholar

    [6]

    Hu T C, Zhu S K, Zhao Y N, Sun X, Yang J, He Y, Wang X B, Bai C J, Bai H, Wei H, Cao M, Hu Z Q, Liu M, Cui W Z 2022 Chin. Phys. B 31 047901Google Scholar

    [7]

    Kirby R E, King F K 2001 Nucl. Instrum. Methods Phys. Res. , Sect. A 469 1Google Scholar

    [8]

    林舒, 闫杨娇, 李永东, 刘纯亮 2014 物理学报 63 147902Google Scholar

    Lin S, Yan Y J, Li Y D, Liu C L 2014 Acta Phys. Sin. 63 147902Google Scholar

    [9]

    李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲 2015 物理学报 64 137701Google Scholar

    Li S, Chang C, Wang J G, Liu Y S, Zhu M, Guo L T, Xie J L 2015 Acta Phys. Sin. 64 137701Google Scholar

    [10]

    周前红, 董烨, 董志伟, 周海京 2015 物理学报 64 085201Google Scholar

    Zhou Q H, Dong Y, Dong Z W, Zhou H J 2015 Acta Phys. Sin. 64 085201Google Scholar

    [11]

    He J, Yang J, Zhao W, Long J, Lan C, Liu E, Chen X, Li J, Yang Z, Dong P, Wang T, Shi J 2020 Appl. Surf. Sci. 515 145990Google Scholar

    [12]

    González L A, Larciprete R, Cimino R 2016 AIP Adv. 6 095117Google Scholar

    [13]

    Brillson L J, Foster G M, Cox J, Ruane W T, Jarjour A B, Gao, H, Von Wenckstern H, Grundmann M, Wang B, Look D C, Hyland A, Allen M W 2018 J. Electron. Mater. 47 4980Google Scholar

    [14]

    Sun X L, Goss S H, Brillson L J, Look D C, Molnar R J 2002 J. Appl. Phys. 91 6729Google Scholar

    [15]

    Taha M, Abdelhay R A, Khedr M H 2022 Optik 271 170125Google Scholar

    [16]

    Heo S, Cho E, Lee H I, Park G S, Kang H J, Nagatomi T, Choi P, Choi B D 2015 AIP Adv. 5 077167Google Scholar

    [17]

    Hussain A, Mian S A, Ahmed E, Jang J 2023 J. Mol. Model 29 393Google Scholar

    [18]

    Nguyen H K A, Sanati M, Joshi R P 2019 J. Appl. Phys. 126 123301Google Scholar

    [19]

    李盛涛, 聂永杰, 闵道敏, 潘绍明 2017 电工技术学报 32 1

    Li S T, Nie Y J, Min D M, Pan S M 2017 Trans. Chin. Electrotech. Soc. 32 1

    [20]

    Zhang G J, Su G Q, Song B P, Mu H B 2018 IEEE Trans. Dielectr. Electr. Insul. 25 2321Google Scholar

    [21]

    Wang Y L, Craven M, Yu X T, Ding J, Bryant P, Huang J, Tu X 2019 ACS Catal. 9 10780Google Scholar

    [22]

    Diao Y, Wang H, Chen B, Zhang X, Shi C 2023 Appl. Catal., B 330 122573Google Scholar

    [23]

    Quantum ESPRESSO https://www.quantum-espresso.org/ (accessed 8 March 2023

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [26]

    Hussain A, Yang L H, Zou Y B, Mao S F, Da B, Li H M, Ding Z J 2020 J. Appl. Phys. 128 015305Google Scholar

    [27]

    Yater J E 2023 J. Appl. Phys. 133 050901Google Scholar

    [28]

    Zhang J, Niu Y, Yan R Q, Zhang R Q, Cao M, Li Y D, Liu C L, Zhang J W, Luo W 2024 J. Appl. Phys. 135 013301Google Scholar

    [29]

    Waidmann S, Knupfer M, Arnold B, Fink J, Fleszar A, Hanke W 2000 Phys. Rev. B 61 10149Google Scholar

    [30]

    Polak M P, Morgan D 2021 Comput. Mater. Sci. 193 110281Google Scholar

    [31]

    Drouin D, Hovington P, Gauvin R 1997 Scanning 19 20Google Scholar

    [32]

    Czyżewski Z, MacCallum D O N, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066Google Scholar

    [33]

    Tho T H, Nguyen-Truong H T 2019 J. Phys. Condens. Matter. 31 415901Google Scholar

    [34]

    张朝民, 江勇, 尹登峰, 陶辉锦, 孙顺平, 姚建刚 2016 物理学报 65 076101Google Scholar

    Zhang C M, Jiang Y, Yin D F, Tao H J, Sun S P, Yao J G 2016 Acta Phys. Sin. 65 076101Google Scholar

  • [1] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [2] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [3] 孙贤明, 肖赛, 王海华, 万隆, 申晋. 高斯光束在双层云中传输的蒙特卡罗模拟. 物理学报, 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [4] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟. 物理学报, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [5] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子. 物理学报, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [6] 彭亚晶, 蒋艳雪. 分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响. 物理学报, 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [7] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析. 物理学报, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [8] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [9] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [10] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [11] 袁剑辉, 程玉民, 张振华. 空位结构缺陷对C纳米管弹性性质的影响. 物理学报, 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
    [12] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值. 物理学报, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [13] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究. 物理学报, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [14] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究. 物理学报, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [15] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [16] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [17] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [18] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [19] 姚明珍, 梁玲, 顾牡, 段勇, 马晓辉. PbWO4晶体空位型缺陷电子结构的研究. 物理学报, 2002, 51(1): 125-128. doi: 10.7498/aps.51.125
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  1181
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-06-06
  • 上网日期:  2024-06-26
  • 刊出日期:  2024-08-05

/

返回文章
返回