搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锥形等离子体通道的百拍瓦激光脉冲整形及重离子加速

赵娜 欧阳建明 邹德滨 张国博 甘龙飞 邵福球

引用本文:
Citation:

基于锥形等离子体通道的百拍瓦激光脉冲整形及重离子加速

赵娜, 欧阳建明, 邹德滨, 张国博, 甘龙飞, 邵福球

Hundreds-petawatt laser pulses shaping and heavy ion acceleration based on conical plasma channels

Zhao Na, Ou-yang Jian-Ming, Zou De-Bin, Zhang Guo-Bo, Gan Long-Fei, Shao Fu-Qiu
PDF
HTML
导出引用
  • 利用粒子模拟程序研究了百拍瓦极端光场条件下, 锥形等离子体通道对激光脉冲的整形和重离子加速的影响. 研究发现, 由于非线性干涉和聚焦效应, 锥形等离子体通道能够整形激光脉冲时空波形并增强激光强度. 对于强度为5.46 × 1022 W/cm2、束腰半径为10 μm的线偏振激光入射夹角θ = 10°的锥形等离子体通道, 可获得紧聚焦 (束腰半径< 1 μm)、超高强度 (强度提高6倍) 的整形激光. 利用该激光加速通道末端的超薄平靶发现, 辐射反作用力能够有效地抑制由于电子加热和激光强度横向不均匀引起的超薄平靶横向膨胀, 延长超薄平靶透明时间, 使得金离子得到充分加速, 最终可获得截止能量高达约 240 GeV的金离子. 研究结果有望为未来百PW激光重离子加速实验方案设计及其在核-核碰撞中的应用研究提供理论参考.
    In this work, the effects of conical plasma channels on the laser pulses shaping and the heavy ion acceleration under the extreme light field conditions of hundreds-petawatt are investigated by using a particle simulation method. The law of influence of the conical plasma channel on the spatio-temporal waveform and intensity of the incident laser is analyzed, when the quantum electrodynamics (QED) effect is taken into account. The reason for the shaping laser-enhanced heavy ion acceleration is given, and the role of the QED effect in the acceleration process is explained.It is found that due to the non-linear interference and focusing effects, the conical plasma channel can shape the spatio-temporal waveform of the laser pulse and enhance the laser intensity. A tightly focused (beam waist radius < 1 μm) and ultra-high intensity (enhanced 6 times) shaping laser is obtained for a linearly polarized laser with an intensity of 5.46×1022 W/cm2 and a waist radius of 10 μm at an incident angle of θ = 10°. In the simulation, the conical plasma channel is filled by fully ionized high-Z gold plasma with an electron density up to ne = 2626.5nc. Therefore most of the laser energy in the channel is reflected by the channel wall, and the QED effect has less influence on laser focusing and shaping. This laser is used to accelerate an ultra-thin flat target placed at the end of the channel. It is found that the radiation reaction force can effectively suppress the transverse expansion of the ultra-thin flat target, caused by the electron heating and the transverse non-uniform of the laser intensity. The transparency time of the ultra-thin flat target is prolonged, which will allow the gold ions to be fully accelerated. Ultimately, the gold ions can reach up to about 240 GeV in cutoff energy. These results are expected to provide theoretical reference and technical support for designing the future experiments on hundreds-petawatt laser heavy ion acceleration and their applications in high-quality ion source, such as nucleus-nucleus collisions.
  • 图 1  t = 50T0时, 百拍瓦激光与不同参数的锥形等离子体通道相互作用时横向电场Ey的空间分布, 电场归一化到meω0c/e. 图中黑框为初始时刻靶的位置 (a), (c), (e) 固定r = 3 μm, θ分别为5°, 10°和20°; (b), (d), (f) 固定θ = 10°, r分别为1, 5 和8 μm

    Fig. 1.  Spatial distributions of the transverse electric field Ey in the interactions of the hundreds-petawatt laser pulse with conical plasma channels of different parameters at t = 50T0. Here, the electric fields Ey are normalized by meω0c/e. The black boxes in the figures show the positions of the targets at the initial moment: (a), (c), (e) Plasma channels with fixed end opening radius r = 3 μm and θ are 5°, 10°, and 20°, respectively; (b), (d), (f) plasma channels with fixed θ = 10° and r are 1, 5 and 8 μm, respectively.

    图 2  t = 50T0时, 百拍瓦激光与不同参数的锥形等离子体通道相互作用时y = 0 μm位置的横向电场Ey分布(a), (b)及其最大值位置的径向分布(c), (d), 电场归一化到meω0c/e (a), (c) 固定r = 3 μm, θ分别为5°, 10°和20°; (b), (d) 固定θ = 10°, r分别为1, 5和8 μm. 作为比较, 图中黑线为激光脉冲在真空中传播时的情况

    Fig. 2.  Distributions of the transverse electric fields Ey along y = 0 μm ((a), (b)) and radial distributions at the location of the maximum Ey ((c), (d)) when the hundreds-petawatt laser pulse interacts with conical plasma channels of different parameters at t = 50T0. Here, the electric fields Ey are normalized by meω0c/e: (a), (c) Channels with fixed end opening radius r = 3 μm and θ are 5°, 10°, and 20°, respectively; (b), (d) channels with fixed θ = 10° and r are 1, 5 and 8 μm, respectively. For comparison, the black lines in the figures represent the propagation of the laser pulses in vacuum.

    图 3  通道靶(a), (b)和平板靶(d), (e)的Au79+离子平均能量的空间分布演化, 离子平均能量归一化到mec2. 通道靶和平板靶的Au79+离子能谱演化(c)和能量转换效率η随时间的演化(f)

    Fig. 3.  Evolutions of the spatial distribution of the average energy of Au79+ ions for the channel target ((a), (b)) and the flat target ((d), (e)). Here, the average energy of the ions is normalized by mec2. Temporal evolutions of the energy spectra of Au79+ ions (c) and the energy conversion efficiencies η from laser to all the particles, Au ions, electrons and gamma photons (f) for the channel target and the flat target.

    图 4  t = 50T0时刻, 通道靶和平板靶的坡印亭矢量分量Sx的空间分布(a)和(d), 离子密度ni, 电子密度ne和纵向电场Exy = 0 μm位置的轴向分布(b)和(e), 电子能谱(c)和(f). 其中Sx的单位为W/cm2, 离子密度ni、电子密度ne和纵向电场Ex分别归一化到nc, Zncmeω0c/e

    Fig. 4.  Spatial distribution of Sx (the x-direction component of the Poynting vector) (a), (d), axial distribution of ion density ni, electron density ne, and longitudinal electric field Ex along y = 0 μm (b), (e) and electron energy spectrum (c), (f) for the channel target (conical, (a)–(c) and the flat target (flat, (d)–(f)) at t = 50T0. Here, the unit of Sx is W/cm2, and the ion density ni, electron density ne, and longitudinal electric field Ex are normalized by nc, Znc and meω0c/e, respectively.

    图 5  考虑(w)和不考虑(w/o) QED效应时, 百拍瓦激光脉冲与锥形等离子体通道相互作用时y = 0 μm位置的横向电场Ey (a)及其最大值位置的径向分布(d), 其中电场归一化到meω0c/e. 不考虑QED效应时, 通道靶情况的电子能谱(b)、Au79+离子能谱(c)、Au79+离子平均能量分布(e)及离子密度ni、电子密度ne和纵向电场Exy = 0 μm位置的分布(f). 离子密度ni、电子密度ne、纵向电场Ex和离子平均能量分别归一化到nc, Znc, meω0c/emec2

    Fig. 5.  With (w) and without (w/o) considering the QED effect, the distribution of the transverse electric field Ey along y = 0 μm (a) and radial distribution at the location of the maximum Ey (d) when the hundreds-petawatt laser pulse interacts with conical channel target. Here, the electric field Ey are normalized by meω0c/e. Without considering the QED effect, the electron spectrum (b), Au79+ ion spectrum (c), the distribution of the average energy of Au79+ ion (e), and the distribution of ion density ni, electron density ne, and longitudinal electric field Ex along y = 0 μm (f). Here, the ion density ni, electron density ne, longitudinal electric field Ex, and the average energy of Au79+ ion are normalized by nc, Znc, meω0c/e and mec2, respectively.

    图 6  (a) 考虑(w)和不考虑(w/o) QED效应时Au79+离子截止能量随通道末端超薄平靶厚度d的演化; (b) 考虑(w) QED效应时Au79+离子截止能量同锥型等离子体通道轴向长度L值的关系

    Fig. 6.  (a) Relationship between the cutoff energy of Au79+ ions and the thickness d of the ultra-thin flat target at the end of the conical channel when considering (w) and not considering (w/o) the QED effect; (b) the relationship between the cutoff energy of Au79+ ions and the axial length L of the conical plasma channel when considering the QED effect.

  • [1]

    Gonoskov A, Blackburn T G, Marklund M, Bulanov S S 2022 Rev. Mod. Phys. 94 045001Google Scholar

    [2]

    Domański J, Badziak J 2024 Phys. Plasmas 31 023110Google Scholar

    [3]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar

    [4]

    Badziak J, Domański J 2023 Phys. Plasmas 30 053107Google Scholar

    [5]

    Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, Hopps N W, KatoY, Khazanov E A, Kodama R, Korn G, Li R X, Li Y T, Limpert J, Ma J G, Nam C H, Neely D, Papadopoulos D, Penman R R, Qian L J, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmári S, Trines R M G M, Zhu J Q, Zhu P, Zuegel J D 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [6]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, Raadt T C H, Steinke S, Bin J H, Bulanov S S, Tilborg J, Geddes C G R, Schroeder C B, TóTh C, Esarey E, Swanson K, FanChiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P and Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [7]

    王贻芳, 鲁巍 2022 科学通报 67 805

    Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X and Xu Z Z 2021 Phys. Rev. Lett. 126 214801 [8] Wang Y F, Lu W 2022 Chin. Sci. Bull. 67 805

    [8]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

    [9]

    张普渡, 王伟权, 李哲民, 张资旋, 王叶晨, 周泓宇, 银燕 2023 物理学报 72 184103Google Scholar

    Zhang P D, Wang W Q, Li Z M, Zhang Z X, Wang Y C, Zhou H Y, Yin Y 2023 Acta Phys. Sin. 72 184103Google Scholar

    [10]

    蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新 2021 物理学报 70 084103Google Scholar

    Jiang K N, Feng K, Ke L T, Yu C H, Zhang Z J, Qin Z Y, Liu J S, Wang W T, Li R X 2021 Acta Phys. Sin. 70 084103Google Scholar

    [11]

    Jung D, Yin L, Gautier D C, Wu H C, Letzring S, Dromey B, Shah R, Palaniyappan S, Shimada T, Johnson R P, Schreiber J, Habs D, Fernández J C, Hegelich B M, Albright B J 2013 Phys. Plasmas 20 083103Google Scholar

    [12]

    Braenzel J, Andreev A A, Platonov K, Klingsporn M, Ehrentraut L, Sandner W, Schnurer M 2015 Phys. Rev. Lett. 114 124801Google Scholar

    [13]

    Lindner F H, McCary E, Jiao X, Ostermayr T M, Roycroft R, Tiwari G, Hegelich B M, Schreiber J, Thirolf P G 2019 Plasma Phys. Controlled Fusion 61 055002Google Scholar

    [14]

    Wang P, Gong Z, Lee S G, Shou Y, Geng Y, Jeon C, Kim I J, Lee H W, Yoon J W, Sung J H, Lee S K, Kong D, Liu J, Mei Z, Cao Z, Pan Z, Choi I W, Yan X, Nam C H, Ma W 2021 Phys. Rev. X 11 021049

    [15]

    李儒新 2020 强激光与粒子束 32 011002

    Li R X 2020 High Power Laser Part. Beams 32 011002

    [16]

    Shao B, Li Y, Peng Y, Wang P, Qian J, Leng Y, Li R 2020 Opt. Lett. 45 2215Google Scholar

    [17]

    Extreme Light Infrastructure: https://eli-laser.eu/

    [18]

    Zhao N, Zou D B, Jiang X R, Yu T P, Yu M Y, Liu K, Huang T W, Zhang H, Wu S Z, Hu L X, Zhang G B, Yin Y, Shao F Q, Zhuo H B, Zhou C T 2021 Plasma Phys. Controlled Fusion 63 035009Google Scholar

    [19]

    张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文 2023 物理学报 72 193201Google Scholar

    Zhang D C, Ge H X, Ba Y L, Wen W Q, Zhang Y, Chen D Y, Wang H B, Ma X W 2023 Acta Phys. Sin. 72 193201Google Scholar

    [20]

    Wu D, Qiao B, He X T 2015 Phys. Plasmas 22 093108Google Scholar

    [21]

    Wang H Y, Lin C, Sheng Z M, Liu B, Zhao S, Guo Z Y, Lu Y R, He X T, Chen J E, Yan X Q 2011 Phys. Rev. Lett. 107 265002Google Scholar

    [22]

    Vshivkov V A, Naumova N M, Pegoraro F, Bulanov S V 1998 Phys. Plasmas 5 2727Google Scholar

    [23]

    Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Xia C Q, Wen M, Wang W P, Xu J C, Yu M Y 2009 Phys. Rev. Lett. 103 215005Google Scholar

    [24]

    Mackenroth F, Bulanov S S 2019 Phys. Plasmas 26 023103Google Scholar

    [25]

    Liu P, Qu J F, Liu X Y, Li X F, Cai L, Tang J Y, Kong Q 2020 Phys. Rev. Accel. Beams 23 011303Google Scholar

    [26]

    Zou D B, Zhuo H B, Yang X H, Yu T P, Shao F Q, Pukhov A 2015 Phys. Plasmas 22 063103Google Scholar

    [27]

    吉亮亮, 耿学松, 伍艺通, 沈百飞, 李儒新 2021 物理学报 70 085203Google Scholar

    Ji L L, Geng X S, Wu Y T, Shen B F, Li R X 2021 Acta Phys. Sin. 70 085203Google Scholar

    [28]

    朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰 2021 物理学报 70 085202Google Scholar

    Zhu X L, Wang W M, Yu T P, He F, Chen M, Weng S M, Chen L M, Li Y T, Sheng Z M, Zhang J 2021 Acta Phys. Sin. 70 085202Google Scholar

    [29]

    https://epochpic.github.io/#about

    [30]

    Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar

    [31]

    Bijoy Krishna Das 2003 Ph. D. thesis (Paderborn: Université de Paderborn

    [32]

    Zhuo H B, Chen Z L, Yu W, Sheng Z M, Yu M Y, Jin Z, Kodama R 2010 Phys. Rev. Lett. 105 065003Google Scholar

  • [1] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, doi: 10.7498/aps.70.20210441
    [2] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究. 物理学报, doi: 10.7498/aps.66.075204
    [3] 王建立, 郭亮, 徐先凡, 倪中华, 陈云飞. 晶格振动的超快光谱调控. 物理学报, doi: 10.7498/aps.66.014203
    [4] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速. 物理学报, doi: 10.7498/aps.64.145201
    [5] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, doi: 10.7498/aps.63.184201
    [6] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, doi: 10.7498/aps.59.3523
    [7] 李卫青. 等离子体增强脉冲激光沉积o-BN薄膜. 物理学报, doi: 10.7498/aps.58.6530
    [8] 邱昆, 武保剑, 文峰. 磁光光纤Bragg光栅中圆偏振光的非线性传输特性. 物理学报, doi: 10.7498/aps.58.1726
    [9] 曾曙光, 张彬. 光参量啁啾脉冲放大的逆问题. 物理学报, doi: 10.7498/aps.58.2476
    [10] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅. 物理学报, doi: 10.7498/aps.57.7030
    [11] 栾仕霞, 张秋菊, 武慧春, 盛政明. 激光脉冲在等离子体中的压缩分裂. 物理学报, doi: 10.7498/aps.57.3646
    [12] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, doi: 10.7498/aps.56.7106
    [13] 王伟民, 郑春阳. 超强短脉冲激光在不同密度分布等离子体中的自聚焦. 物理学报, doi: 10.7498/aps.55.310
    [14] 林兆祥, 吴金泉, 龚顺生. 延迟双脉冲激光产生的空气等离子体的光谱研究. 物理学报, doi: 10.7498/aps.55.5892
    [15] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响. 物理学报, doi: 10.7498/aps.55.304
    [16] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, doi: 10.7498/aps.54.4217
    [17] 陈 钢, 潘佰良, 姚志欣. 气体脉冲放电等离子体阻抗的参量研究. 物理学报, doi: 10.7498/aps.52.1635
    [18] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程. 物理学报, doi: 10.7498/aps.51.1768
    [19] 赖国俊, 季沛勇. 基于激光等离子体的光子加速. 物理学报, doi: 10.7498/aps.49.2399
    [20] 程成, 孙威, 唐传舜. 脉冲激光等离子体中时间分辨的电子温度和电子密度. 物理学报, doi: 10.7498/aps.37.1150
计量
  • 文章访问数:  130
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 修回日期:  2024-06-28
  • 上网日期:  2024-07-09

/

返回文章
返回