-
激光等离子体不稳定性(laser plasma instability, LPI)是惯性约束聚变(inertial confinement fusion, ICF)点火过程中的关键问题之一, 多年来受到了广泛的关注. 其中, 宽带激光被认为是解决LPI问题的一个有效途径, 并且目前已经有了大量的模拟研究和少量背向、近前向散射的实验研究, 但是仍然需要侧向散射的实验研究作为补充. 因此, 基于输出达数百焦耳的宽带二倍频激光装置“昆吾”, 本文针对宽带激光与传统窄带激光驱动平面厚靶产生的等离子体不稳定性的侧向散射以及超热电子产额设计实验. 实验结果表明, 功率密度为1×1015 W·cm–2的宽带激光激发的侧向受激布里渊散射(stimulated Brillouin scattering, SBS)与侧向受激拉曼散射(stimulated Raman scattering, SRS)在不同角度下的光谱和份额与窄带激光存在显著差异. 进一步分析发现, 宽带条件下侧向的超热电子份额整体高于窄带, 而此时宽带条件下小角度近前向、小角度近背向的SRS份额却远低于窄带, 初步的定性分析认为此时SRS可能不是超热电子的主要产生机制, 认为此时可能是PDI对超热电子的产生起了主导作用.
-
关键词:
- 激光等离子体不稳定性 /
- 宽带激光 /
- 超热电子
Laser-plasma instability (LPI) is one of the key problems in the ignition process of inertial confinement fusion (ICF), and has been extensively studied in theory, simulation, and experiment for many years. Broadband laser, due to its low temporal coherence, can reduce the effective electric field strength when interacting with plasma and disrupt the phase-matching conditions of LPI, thus an effective approach to solving LPI issues is considered. Current extensive simulation studies indicate that broadband laser can suppress the generation of phenomena such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), and two-plasmon decay (TPD) to some extent. There are also a few backward scattering experimental studies, but more experimental researches, such as side-scattering, are still needed. Therefore, based on the broadband second harmonic laser facility “Kunwu”, the experiments are designed for studying the lateral scattering of critical density plasma driven by broadband laser and traditional narrowband laser, and the production of hot electrons as well in this work. The experimental results show that the side SBS spectra and side SRS spectra and portions at different angles excited by broadband lasers with a power density of 1×1015 W/cm2 are significantly different from those by narrowband lasers. Further analysis reveals that the overall portion of transverse hot electrons in broadband laser cases is higher than that in narrowband laser case. However, for broadband laser, the portion of SRS at small forward angle and backward angle are significantly lower than that for narrowband laser. Preliminary qualitative analysis suggests that SRS may not be the main mechanism for hot electron generation in this case, and that PDI might play a dominant role in generating hot electrons.-
Keywords:
- laser plasma instability /
- broadband laser /
- hot electron
[1] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[2] 杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛, 理玉龙, 郑春阳, 蔡洪波, 刘占军, 郑坚, 龚韬, 王哲斌, 黎航, 况龙钰, 李琦, 王峰, 刘慎业, 杨家敏, 江少恩, 张保汉, 丁永坤 2018 中国科学: 物理学 力学 天文学 48 065203Google Scholar
Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang L Y, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar
[3] MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar
[4] Montgomery D S, Afeyan B B, Cobble J A, Fernandez J C, Wilke M D, Glenzer S H, Kirkwood R K, MacGowan B J, Moody J D, Lindman E L, Munro D H, Wilde B H, Rose H A, Dubois D F, Bezzerides B, Vu H X 1998 Phys. Plasmas 5 1973Google Scholar
[5] Li C X, Dong L F, Feng J Y, Huang Y P, Sun H Y 2020 Rev. Sci Instrum. 91 026105Google Scholar
[6] Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008Google Scholar
[7] Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006Google Scholar
[8] Follett R K, Shaw J G, Myatt J F, Palastro J P, Short R W, Froula D H 2018 Phys. Rev. Lett. 120 135005Google Scholar
[9] Bibeau C, Speck D R, Ehrlich R B, Laumann C W, Kyrazis D T, Henesian M A, Lawson J K, Perry M D, Wegner P J, Weiland T L 1992 Appl. Opt 31 5799Google Scholar
[10] Dixit S N, Feit M D, Perry M D, Powell H T 1996 Opt. Lett 21 1715Google Scholar
[11] Grun J, Emery M E, Manka C K, Lee T N, McLean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672Google Scholar
[12] Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D’Humières E 2019 Phys. Plasmas 26 42707Google Scholar
[13] Albright B, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002Google Scholar
[14] Feng Q S, Liu Z J, Cao L H, Xiao C Z, Hao L, Zheng C Y, Ning C, He X T 2020 Nucl. Fusion 60 066012Google Scholar
[15] Zhong Z Q, Li B, Xiong H, Li J W, Qiu J, Hao L, Zhang B 2021 Opt. Express 29 1304Google Scholar
[16] Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H, Palastro J P 2019 Phys. Plasmas 26 062111Google Scholar
[17] Thomson J J, Karush J I 1974 Phys. Fluids 17 1608Google Scholar
[18] Gao Y Q, Cui Y, Ji L L, Rao D X, Zhao X H, Li F J, Liu D, Feng W, Xia L, Liu J N, Shi H T, Du P Y, Liu J, Li X L, Wang T, Zhang T X, Shan C, Hua Y L, Ma W X, Sun X, Chen X F, Huang X G, Zhu J A, Pei W B, Sui Z, Fu S Z 2020 Matter Radiat. Extrem. 5 065201Google Scholar
[19] Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou S L, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar
[20] Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602Google Scholar
[21] Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114Google Scholar
[22] Yao C, Li J, Hao L, Yan R, Wang C, Lei A L, Ding Y K, Zheng J 2024 Nucl. Fusion 64 106013Google Scholar
-
-
[1] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[2] 杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛, 理玉龙, 郑春阳, 蔡洪波, 刘占军, 郑坚, 龚韬, 王哲斌, 黎航, 况龙钰, 李琦, 王峰, 刘慎业, 杨家敏, 江少恩, 张保汉, 丁永坤 2018 中国科学: 物理学 力学 天文学 48 065203Google Scholar
Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang L Y, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar
[3] MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029Google Scholar
[4] Montgomery D S, Afeyan B B, Cobble J A, Fernandez J C, Wilke M D, Glenzer S H, Kirkwood R K, MacGowan B J, Moody J D, Lindman E L, Munro D H, Wilde B H, Rose H A, Dubois D F, Bezzerides B, Vu H X 1998 Phys. Plasmas 5 1973Google Scholar
[5] Li C X, Dong L F, Feng J Y, Huang Y P, Sun H Y 2020 Rev. Sci Instrum. 91 026105Google Scholar
[6] Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008Google Scholar
[7] Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006Google Scholar
[8] Follett R K, Shaw J G, Myatt J F, Palastro J P, Short R W, Froula D H 2018 Phys. Rev. Lett. 120 135005Google Scholar
[9] Bibeau C, Speck D R, Ehrlich R B, Laumann C W, Kyrazis D T, Henesian M A, Lawson J K, Perry M D, Wegner P J, Weiland T L 1992 Appl. Opt 31 5799Google Scholar
[10] Dixit S N, Feit M D, Perry M D, Powell H T 1996 Opt. Lett 21 1715Google Scholar
[11] Grun J, Emery M E, Manka C K, Lee T N, McLean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672Google Scholar
[12] Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D’Humières E 2019 Phys. Plasmas 26 42707Google Scholar
[13] Albright B, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002Google Scholar
[14] Feng Q S, Liu Z J, Cao L H, Xiao C Z, Hao L, Zheng C Y, Ning C, He X T 2020 Nucl. Fusion 60 066012Google Scholar
[15] Zhong Z Q, Li B, Xiong H, Li J W, Qiu J, Hao L, Zhang B 2021 Opt. Express 29 1304Google Scholar
[16] Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H, Palastro J P 2019 Phys. Plasmas 26 062111Google Scholar
[17] Thomson J J, Karush J I 1974 Phys. Fluids 17 1608Google Scholar
[18] Gao Y Q, Cui Y, Ji L L, Rao D X, Zhao X H, Li F J, Liu D, Feng W, Xia L, Liu J N, Shi H T, Du P Y, Liu J, Li X L, Wang T, Zhang T X, Shan C, Hua Y L, Ma W X, Sun X, Chen X F, Huang X G, Zhu J A, Pei W B, Sui Z, Fu S Z 2020 Matter Radiat. Extrem. 5 065201Google Scholar
[19] Lei A L, Kang N, Zhao Y, Liu H Y, An H H, Xiong J, Wang R R, Xie Z Y, Tu Y C, Xu G X, Zhou X C, Fang Z H, Wang W, Xia L, Feng W, Zhao X H, Ji L L, Cui Y, Zhou S L, Liu Z J, Zheng C Y, Wang L F, Gao Y Q, Huang X G, Fu S Z 2024 Phys. Rev. Lett. 132 035102Google Scholar
[20] Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602Google Scholar
[21] Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114Google Scholar
[22] Yao C, Li J, Hao L, Yan R, Wang C, Lei A L, Ding Y K, Zheng J 2024 Nucl. Fusion 64 106013Google Scholar
计量
- 文章访问数: 445
- PDF下载量: 18
- 被引次数: 0