搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无监督学习方法的细胞膜内单分子扩散运动分析: 胆固醇对模型膜和活细胞膜流动性的不同影响

谭金鹏 张婉婷 徐成 卢雪梅 朱文圣 杨恺 元冰

引用本文:
Citation:

基于无监督学习方法的细胞膜内单分子扩散运动分析: 胆固醇对模型膜和活细胞膜流动性的不同影响

谭金鹏, 张婉婷, 徐成, 卢雪梅, 朱文圣, 杨恺, 元冰
cstr: 32037.14.aps.73.20240915

Analysis of single-molecule diffusion movement in cell membrance based on unsupervised learning methods: Different effects of cholesterol on flowability of model membrane and living cell membrane

Tan Jin-Peng, Zhang Wan-Ting, Xu Cheng, Lu Xue-Mei, Zhu Wen-Sheng, Yang Kai, Yuan Bing
cstr: 32037.14.aps.73.20240915
PDF
HTML
导出引用
  • 单分子运动追踪是研究软物质体系尤其是生命体系动力学过程和分子相互作用的重要方法, 但如何理解生命体系中单分子运动行为的复杂性仍是一个巨大的挑战. 针对这一问题, 本工作提出了一种可对单分子轨迹进行高效识别和分类的、基于无监督学习的“两步归类法”: 首先利用熵约束最小二乘法对扩散轨迹的受限程度进行区分, 继而通过统计检验将非受限轨迹划分为亚扩散、正常扩散和超扩散等不同运动模式类型. 利用该方法, 本工作解析了DOPC模型细胞膜和活细胞膜内的单分子扩散运动特征, 揭示了胆固醇成分对二者的差异影响. 结果显示: 模型膜和活细胞膜均包含多种不同的扩散模式; 在DOPC模型膜体系中, 胆固醇成分会阻碍膜内的分子扩散运动, 且阻碍程度与胆固醇含量正相关; 在活细胞体系中, 分子运动速率显著低于模型膜体系, 并且, 胆固醇的去除会进一步减慢分子扩散速率 . 本研究有助于从单分子运动角度深入理解生物分子运动行为的复杂性及其对体系环境的依赖性.
    Single molecular tracking is a valuable approach to investigate the dynamic processes and molecular interactions in soft matter systems, particularly in biological systems. However, understanding the complexity of single molecule motion behaviors in biological systems remains a significant challenge. To address this issue, we propose a two-step classification method based on unsupervised learning to efficiently identify and classify single molecule trajectories. Firstly, we employ an entropy-constrained least square method to distinguish between confined (e.g., immobile) and unconfined diffusion trajectories. Subsequently, statistical tests are utilized to categorize the unconfined trajectories into different diffusion modes such as sub-diffusion, normal diffusion, and super-diffusion.By applying this method, we analyze the diffusion motion of single molecules in both DOPC model cell membranes and living cell membranes while uncovering their distinct responses to cholesterol composition. Our findings demonstrate that both model membranes and living cell membranes exhibit diverse molecular diffusion modes. Specifically, in the DOPC model membrane system, the presence of cholesterol components impedes lipid diffusion within the membrane. The degree of inhibition is positively correlated with the amount of cholesterol present. For instance, as the cholesterol content in the membrane increases from 0 to 20% (DOPC:Chol = 4∶1) and 50% (DOPC:Chol = 1∶1), there is an increase in the proportion of molecules, exhibiting confined diffusion and sub-diffusion (from 55% to 45%), while there is a decrease in the proportion of molecules, displaying normal diffusion and super-diffusion (from 45% to 35%). The ensemble diffusion coefficient of molecules in the membrane significantly decreases, which can be attributed to both a decrease in velocity among fast-moving molecules. Interestingly, after using MeβCD to remove cholesterol, the single-molecule mobility within the DOPC/Chol composite membrane system is restored to a level similar to that of the pure DOPC membrane.Conversely, in the living cell membrane system, the diffusion coefficient values of molecules are significantly lower than those observed in the model membrane system; furthermore, the removal of cholesterol further slows down the molecular diffusion rate. This study contributes to understanding the intricacies of biomolecular motility and its dependence on environmental factors from a perspective of single molecular motion.
      通信作者: 杨恺, yangkai@suda.edu.cn ; 元冰, yuanbing@sslab.org.cn
    • 基金项目: 国家自然科学基金(批准号: 12274307, 32230063, 12347102, 22307090, 22203059)、广东省基础与应用基础研究基金(批准号: 2023A1515011610)、江苏省自然科学基金(批准号: BK20210100)和前沿材料物理与器件省高校重点实验室(苏州大学)(批准号: KJS2131)资助的课题.
      Corresponding author: Yang Kai, yangkai@suda.edu.cn ; Yuan Bing, yuanbing@sslab.org.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274307, 32230063, 12347102, 22307090, 22203059), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2023A1515011610), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210100), and the Program of Jiangsu Key Laboratory of Frontier Material Physics and Devices, China (Grant No. KJS2131).
    [1]

    Jacobson K, Liu P, Lagerholm B C 2019 Cell 177 806Google Scholar

    [2]

    He W, Song H, Su Y, et al. 2016 Nat. Commun. 7 11701Google Scholar

    [3]

    Golan Y, Sherman E 2017 Nat. Commun. 8 15851Google Scholar

    [4]

    Subczynski W K, Pasenkiewicz-Gierula M, Widomska J, Mainali L, Raguz M 2017 Cell Biochem. Biophys. 75 369Google Scholar

    [5]

    van Meer G, Voelker D R, Feigenson G W 2008 Nat. Rev. Mol. Cell Biol. 9 112Google Scholar

    [6]

    Liu Y, Zheng X, Guan D, Jiang X, Hu G 2022 ACS Nano 16 16054Google Scholar

    [7]

    Lyman E 2021 Biophys. J. 120 1777Google Scholar

    [8]

    Zhang X, Barraza K M, Beauchamp J L 2018 P. Natl. Acad. Sci. USA 115 3255Google Scholar

    [9]

    Chakraborty S, Doktorova M, Molugu T R, et al. 2020 P. Natl. Acad. Sci. USA 117 21896Google Scholar

    [10]

    Pohnl M, Trollmann M F W, Bockmann R A 2023 Nat. Commun. 14 8038Google Scholar

    [11]

    Fernandez-Perez E J, Sepulveda F J, Peters C, et al. 2018 Front. Aging Neurosci. 10 226Google Scholar

    [12]

    Doole F T, Kumarage T, Ashkar R, Brown M F 2022 J. Membr. Biol. 255 385Google Scholar

    [13]

    Byfield F J, Aranda-Espinoza H, Romanenko V G, Rothblat G H, Levitan I 2004 Biophys. J. 87 3336Google Scholar

    [14]

    Yang S T, Kreutzberger A J B, Lee J, Kiessling V, Tamm L K 2016 Chem. Phys. Lipids 199 136Google Scholar

    [15]

    Norregaard K, Metzler R, Ritter C M, Berg-Sorensen K, Oddershede L B 2017 Chem. Rev. 117 4342Google Scholar

    [16]

    Ge F, Du Y, He Y 2022 ACS Nano 16 5325Google Scholar

    [17]

    Chen P Y, Yue H, Zhai X B, Huang Z H, Ma G H, Wei W, Yan L T 2019 Sci. Adv. 5 eaaw3192Google Scholar

    [18]

    Jeon J H, Javanainen M, Martinez-Seara H, Metzler R, Vattulainen I 2016 Phys. Rev. X 6 021006Google Scholar

    [19]

    Xu C, Yang K, Yuan B 2023 J. Phys. Chem. Lett. 14 854Google Scholar

    [20]

    Xu C, Ma W, Wang K, He K, Chen Z, Liu J, Yang K, Yuan B 2020 J. Phys. Chem. Lett. 11 4834Google Scholar

    [21]

    Pinholt H D, Bohr S S R, Iversen J F, Boomsma W, Hatzakis N S 2021 P. Natl. Acad. Sci. USA 118 e2104624118Google Scholar

    [22]

    Muñoz-Gil G, Garcia-March M A, Manzo C, Martín-Guerrero J D, Lewenstein M 2020 New J. Phys. 22 013010Google Scholar

    [23]

    Cherstvy A G, Thapa S, Wagner C E, Metzler R 2019 Soft Matter 15 2526Google Scholar

    [24]

    Granik N, Weiss L E, Nehme E, Levin M, Chein M, Perlson E, Roichman Y, Shechtman Y 2019 Biophys. J. 117 185Google Scholar

    [25]

    Janczura J, Kowalek P, Loch-Olszewska H, Szwabinski J, Weron A 2020 Phys. Rev. E 102 032402Google Scholar

    [26]

    Barkai E, Garini Y, Metzler R 2012 Phys. Today 65 29Google Scholar

    [27]

    Krapf D, Metzler R 2019 Phys. Today 72 48Google Scholar

    [28]

    Wu J F, Xu C, Ye Z F, Chen H B, Wang Y P, Yang K, Yuan B 2023 Small 19 2301713Google Scholar

    [29]

    Yamamoto E, Akimoto T, Kalli A C, Yasuoka K, Sansom M S P 2017 Sci. Adv. 3 e1601871Google Scholar

    [30]

    Feder T J, Brust-Mascher I, Slattery J P, Baird B, Webb W W 1996 Biophys. J. 70 2767Google Scholar

    [31]

    Briane V, Kervrann C, Vimond M 2018 Phys. Rev. E 97 062121Google Scholar

    [32]

    Lanoiselée Y, Sikora G, Grzesiek A, Grebenkov D S, Wylomanska A 2018 Phys. Rev. E 98 062139Google Scholar

    [33]

    Sikora G, Teuerle M, Wylomanska A, Grebenkov D 2017 Phys. Rev. E 96 022132Google Scholar

    [34]

    Saxton M J, Jacobson K 1997 Annu. Rev. Biophys. Biomol. Struct. 26 373Google Scholar

    [35]

    Kusumi A, Sako Y, Yamamoto M 1993 Biophys. J. 65 2021Google Scholar

    [36]

    Saxton M J 1993 Biophys. J. 64 1766Google Scholar

    [37]

    Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [38]

    Wright S J, Tenny M J 2004 Siam J. Optim. 14 1074Google Scholar

    [39]

    Raja M A Z, Ahmed U, Zameer A, Kiani A K, Chaudhary N I 2019 Neural. Comput. Appl. 31 447Google Scholar

    [40]

    Zhang Y, Yao F, Iu H H C, Fernando T, Wong K P 2013 J. Mod. Power Syst. Clean Energy 1 231Google Scholar

    [41]

    Weron A, Janczura J, Boryczka E, Sungkaworn T, Calebiro D 2019 Phys. Rev. E 99 042149Google Scholar

    [42]

    Hubicka K, Janczura J 2020 Phys. Rev. E 101 022107Google Scholar

    [43]

    Xu R, Zhang W T, Jin T, Tu W, Xu C, Wei Y, Han W, Yang K, Yuan B 2024 ACS Appl. Mater. Interfaces 16 6813Google Scholar

    [44]

    Li L, Ji J, Song F, Hu J 2023 J. Mol. Biol. 435 167787Google Scholar

    [45]

    Li L, Hou R H, Shi X H, et al. 2024 Commun. Phys. 7 174Google Scholar

    [46]

    Gao J, Hou R, Li L, Hu J 2021 Front. Mol. Biosci. 8 811711Google Scholar

    [47]

    陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华 2018 物理学报 67 088201Google Scholar

    Lu Y, Ma J B, Teng C J, Lu Y, Li M, Xu C H 2018 Acta Phys. Sin. 67 088201Google Scholar

    [48]

    Gao J, Hou R, Hu W, et al. 2024 J. Phys. Chem. B 128 4735Google Scholar

  • 图 1  单分子扩散运动的不同模式 (a)模拟运动模型的MSD曲线, 即定向扩散(蓝色)、正常扩散(红色)、异常扩散(绿色)和受限扩散(黑色), 横坐标为滞后时间(lag time); (b)采用“两步归类法”对单分子轨迹进行识别和分类的步骤, 第一步区分受限扩散与非受限扩散, 第二步将非受限扩散进一步区分

    Fig. 1.  Different modes of single-molecule diffusion. (a) Simulated mean square displacement (MSD) curves depicting directed diffusion (blue), normal diffusion (red), anomalous diffusion (green), and confined diffusion (black). (b) The “two-step classification method” employed to identify and classify single-molecule trajectories: the first step involves distinguishing between confined and unconfined diffusion, followed by further differentiation of unconfined diffusion in the second step.

    图 2  不同模型膜体系内单分子扩散运动分析, 即利用“两步归类法”将其分为受限扩散(Confined diffusion)、亚扩散(Sub-diffusion)、正常扩散(Normal diffusion)、超扩散(Super-diffusion) 4个子群, 分别计算其单分子轨迹的时间平均MSD并作出其分布. 轨迹数目见表1

    Fig. 2.  Analysis of single lipid diffusion in various model membrane systems using the “two-step classification method”. Trajectories were categorized into four subgroups, namely confined diffusion, sub-diffusion, normal diffusion, and super-diffusion. The time-averaged MSD of individual trajectories was calculated to obtain the distribution. The number of trajectories is presented in Table 1.

    图 3  B16活细胞膜(MeβCD处理前或处理后)内单分子扩散运动分析, 即利用“两步归类法”将其分为受限扩散(Confined diffusion)、亚扩散(Sub-diffusion)、正常扩散(Normal diffusion) 3个子群, 分别计算其单分子轨迹的时间平均MSD并作出其分布, 轨迹数目见表2

    Fig. 3.  Analysis of single-molecule diffusion in live cell membranes (before or after MeβCD treatment). This analysis employs a two-step classification method to divide the data into subgroups of confined diffusion, sub-diffusion, and normal diffusion. The time-averaged MSD is calculated for individual trajectories and its distribution is plotted. The number of trajectories analyzed is provided in Table 2.

    图 4  不同体系内DLα值分布, 包括纯DOPC膜(包含1324条轨迹)、DOPC∶Chol = 1∶1混合膜(2347条轨迹)、活细胞膜经MeβCD处理之前(1436条轨迹)和之后(784条轨迹), 其中插图中横坐标以对数形式显示

    Fig. 4.  Distribution of DL and α values in different systems: pure DOPC membrane (1324 trajectories), DOPC∶Chol = 1∶1 mixed membrane (2347 trajectories), living cell membrane before MeβCD treatment (1436 trajectories), and after MeβCD treatment (784 trajectories). The horizontal coordinate is presented logarithmically in the inset.

    表 1  不同模型膜体系内单脂质分子轨迹分类及相应的系综扩散系数和异常指数数值, 其中轨迹长度为60帧

    Table 1.  Classification of single lipid trajectories in different model membrane systems and corresponding ensemble diffusion coefficient and anomaly index values. The trajectory length is 60 frames.

    Subgroup Control +MeβCD
    DOPC DOPC:CHOL
    = 4∶1
    DOPC:CHOL
    = 1∶1
    DOPC DOPC:CHOL
    = 4∶1
    DOPC:CHOL
    = 1∶1
    Trajectory
    number
    Confined 282 383 497 293 334 330
    Sub-diffusion 943 1143 1036 947 799 811
    Normal diffusion 318 294 290 305 200 207
    Super-diffusion 667 577 524 647 448 449
    Proportion/% Confined 12.76 15.98 21.18 13.37 18.75 18.36
    Sub-diffusion 42.67 47.68 44.14 43.20 44.86 45.13
    Normal diffusion 14.39 12.27 12.36 13.91 11.23 11.52
    Super-diffusion 30.18 24.07 22.33 29.52 25.15 24.99
    Diffusion coefficient
    DL/(μm2·s–1)
    Confined 0.045 0.032 0.029 0.064 0.034 0.061
    Sub-diffusion 1.086 0.582 0.308 0.805 0.784 0.717
    Normal diffusion 2.421 1.581 0.870 2.100 2.051 1.781
    Super-diffusion 4.149 3.211 1.444 3.908 3.650 3.381
    Anomaly
    index (α)
    Confined 0.116 0.094 0.068 0.207 0.099 0.171
    Sub-diffusion 0.709 0.629 0.512 0.629 0.635 0.614
    Normal diffusion 0.909 0.869 0.916 0.948 0.910 0.874
    Super-diffusion 1.133 1.103 1.178 1.141 1.132 1.132
    下载: 导出CSV

    表 2  经MeβCD去除胆固醇前后活细胞膜内单分子轨迹分类及相应的系综扩散系数和异常指数数值, 其中轨迹长度为20帧

    Table 2.  Classification of single-molecule trajectory in living cell membranes before and after cholesterol depletion by MeβCD, along with corresponding ensemble-averaged diffusion coefficient and anomaly index values. The trajectory length is 20 frames.

    Subgroup Control +MeβCD
    Trajectory
    number
    Confined 452 304
    Sub-diffusion 645 377
    Normal diffusion 339 103
    Proportion/% Confined 31.48 38.78
    Sub-diffusion 44.92 48.09
    Normal diffusion 23.61 13.14
    Diffusion coefficient
    DL/(μm2·s–1)
    Confined 0.017 0.011
    Sub-diffusion 0.069 0.040
    Normal diffusion 0.465 0.260
    Anomaly
    index (α)
    Confined 0.146 0.095
    Sub-diffusion 0.437 0.461
    Normal diffusion 0.983 0.861
    下载: 导出CSV
  • [1]

    Jacobson K, Liu P, Lagerholm B C 2019 Cell 177 806Google Scholar

    [2]

    He W, Song H, Su Y, et al. 2016 Nat. Commun. 7 11701Google Scholar

    [3]

    Golan Y, Sherman E 2017 Nat. Commun. 8 15851Google Scholar

    [4]

    Subczynski W K, Pasenkiewicz-Gierula M, Widomska J, Mainali L, Raguz M 2017 Cell Biochem. Biophys. 75 369Google Scholar

    [5]

    van Meer G, Voelker D R, Feigenson G W 2008 Nat. Rev. Mol. Cell Biol. 9 112Google Scholar

    [6]

    Liu Y, Zheng X, Guan D, Jiang X, Hu G 2022 ACS Nano 16 16054Google Scholar

    [7]

    Lyman E 2021 Biophys. J. 120 1777Google Scholar

    [8]

    Zhang X, Barraza K M, Beauchamp J L 2018 P. Natl. Acad. Sci. USA 115 3255Google Scholar

    [9]

    Chakraborty S, Doktorova M, Molugu T R, et al. 2020 P. Natl. Acad. Sci. USA 117 21896Google Scholar

    [10]

    Pohnl M, Trollmann M F W, Bockmann R A 2023 Nat. Commun. 14 8038Google Scholar

    [11]

    Fernandez-Perez E J, Sepulveda F J, Peters C, et al. 2018 Front. Aging Neurosci. 10 226Google Scholar

    [12]

    Doole F T, Kumarage T, Ashkar R, Brown M F 2022 J. Membr. Biol. 255 385Google Scholar

    [13]

    Byfield F J, Aranda-Espinoza H, Romanenko V G, Rothblat G H, Levitan I 2004 Biophys. J. 87 3336Google Scholar

    [14]

    Yang S T, Kreutzberger A J B, Lee J, Kiessling V, Tamm L K 2016 Chem. Phys. Lipids 199 136Google Scholar

    [15]

    Norregaard K, Metzler R, Ritter C M, Berg-Sorensen K, Oddershede L B 2017 Chem. Rev. 117 4342Google Scholar

    [16]

    Ge F, Du Y, He Y 2022 ACS Nano 16 5325Google Scholar

    [17]

    Chen P Y, Yue H, Zhai X B, Huang Z H, Ma G H, Wei W, Yan L T 2019 Sci. Adv. 5 eaaw3192Google Scholar

    [18]

    Jeon J H, Javanainen M, Martinez-Seara H, Metzler R, Vattulainen I 2016 Phys. Rev. X 6 021006Google Scholar

    [19]

    Xu C, Yang K, Yuan B 2023 J. Phys. Chem. Lett. 14 854Google Scholar

    [20]

    Xu C, Ma W, Wang K, He K, Chen Z, Liu J, Yang K, Yuan B 2020 J. Phys. Chem. Lett. 11 4834Google Scholar

    [21]

    Pinholt H D, Bohr S S R, Iversen J F, Boomsma W, Hatzakis N S 2021 P. Natl. Acad. Sci. USA 118 e2104624118Google Scholar

    [22]

    Muñoz-Gil G, Garcia-March M A, Manzo C, Martín-Guerrero J D, Lewenstein M 2020 New J. Phys. 22 013010Google Scholar

    [23]

    Cherstvy A G, Thapa S, Wagner C E, Metzler R 2019 Soft Matter 15 2526Google Scholar

    [24]

    Granik N, Weiss L E, Nehme E, Levin M, Chein M, Perlson E, Roichman Y, Shechtman Y 2019 Biophys. J. 117 185Google Scholar

    [25]

    Janczura J, Kowalek P, Loch-Olszewska H, Szwabinski J, Weron A 2020 Phys. Rev. E 102 032402Google Scholar

    [26]

    Barkai E, Garini Y, Metzler R 2012 Phys. Today 65 29Google Scholar

    [27]

    Krapf D, Metzler R 2019 Phys. Today 72 48Google Scholar

    [28]

    Wu J F, Xu C, Ye Z F, Chen H B, Wang Y P, Yang K, Yuan B 2023 Small 19 2301713Google Scholar

    [29]

    Yamamoto E, Akimoto T, Kalli A C, Yasuoka K, Sansom M S P 2017 Sci. Adv. 3 e1601871Google Scholar

    [30]

    Feder T J, Brust-Mascher I, Slattery J P, Baird B, Webb W W 1996 Biophys. J. 70 2767Google Scholar

    [31]

    Briane V, Kervrann C, Vimond M 2018 Phys. Rev. E 97 062121Google Scholar

    [32]

    Lanoiselée Y, Sikora G, Grzesiek A, Grebenkov D S, Wylomanska A 2018 Phys. Rev. E 98 062139Google Scholar

    [33]

    Sikora G, Teuerle M, Wylomanska A, Grebenkov D 2017 Phys. Rev. E 96 022132Google Scholar

    [34]

    Saxton M J, Jacobson K 1997 Annu. Rev. Biophys. Biomol. Struct. 26 373Google Scholar

    [35]

    Kusumi A, Sako Y, Yamamoto M 1993 Biophys. J. 65 2021Google Scholar

    [36]

    Saxton M J 1993 Biophys. J. 64 1766Google Scholar

    [37]

    Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar

    [38]

    Wright S J, Tenny M J 2004 Siam J. Optim. 14 1074Google Scholar

    [39]

    Raja M A Z, Ahmed U, Zameer A, Kiani A K, Chaudhary N I 2019 Neural. Comput. Appl. 31 447Google Scholar

    [40]

    Zhang Y, Yao F, Iu H H C, Fernando T, Wong K P 2013 J. Mod. Power Syst. Clean Energy 1 231Google Scholar

    [41]

    Weron A, Janczura J, Boryczka E, Sungkaworn T, Calebiro D 2019 Phys. Rev. E 99 042149Google Scholar

    [42]

    Hubicka K, Janczura J 2020 Phys. Rev. E 101 022107Google Scholar

    [43]

    Xu R, Zhang W T, Jin T, Tu W, Xu C, Wei Y, Han W, Yang K, Yuan B 2024 ACS Appl. Mater. Interfaces 16 6813Google Scholar

    [44]

    Li L, Ji J, Song F, Hu J 2023 J. Mol. Biol. 435 167787Google Scholar

    [45]

    Li L, Hou R H, Shi X H, et al. 2024 Commun. Phys. 7 174Google Scholar

    [46]

    Gao J, Hou R, Li L, Hu J 2021 Front. Mol. Biosci. 8 811711Google Scholar

    [47]

    陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华 2018 物理学报 67 088201Google Scholar

    Lu Y, Ma J B, Teng C J, Lu Y, Li M, Xu C H 2018 Acta Phys. Sin. 67 088201Google Scholar

    [48]

    Gao J, Hou R, Hu W, et al. 2024 J. Phys. Chem. B 128 4735Google Scholar

  • [1] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [2] 应大卫, 张思慧, 邓书金, 武海斌. 基于机器学习的单拍冷原子成像. 物理学报, 2023, 72(14): 144201. doi: 10.7498/aps.72.20230449
    [3] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波. 红外及太赫兹辐照下细胞膜生物效应的研究进展. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212030
    [4] 张亚君, 蔡佳林, 乔亚, 曾中明, 袁喆, 夏钶. 基于磁性隧道结的群体编码实现无监督聚类. 物理学报, 2022, 71(14): 148506. doi: 10.7498/aps.71.20220252
    [5] 黄志伟, 杨宏宇, 翟峰, 陆肖励, 卢军强, 吴健. 非监督学习高维多体波函数矢量轨迹所在低维子空间. 物理学报, 2021, 70(24): 247101. doi: 10.7498/aps.70.20210697
    [6] 薄文斐, 车嵘, 孔磊, 张明洁, 张晓波. 红外及太赫兹辐照下细胞膜生物效应的研究进展. 物理学报, 2021, 70(24): 248707. doi: 10.7498/aps.70.20212030
    [7] 徐成, 林召, 杨恺, 元冰. 蜂毒肽与二元脂膜相互作用过程的单分子运动行为. 物理学报, 2020, 69(10): 108701. doi: 10.7498/aps.69.20200166
    [8] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [9] 何群, 王煜文, 杜硕, 陈晓玲, 谢平. 基于自适应无参经验小波变换和选择集成分类模型的运动想象. 物理学报, 2018, 67(11): 118701. doi: 10.7498/aps.67.20180181
    [10] 李金晴, 罗云荣, 海文华. 囚禁单离子的量子阻尼运动. 物理学报, 2017, 66(23): 233701. doi: 10.7498/aps.66.233701
    [11] 王高, 王晓晨, 刘婷, 刘如川, 刘雳宇. 癌细胞体外实验模型及成型技术现状和展望. 物理学报, 2016, 65(18): 188705. doi: 10.7498/aps.65.188705
    [12] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理. 物理学报, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [13] 高文, 汤洋, 朱明. 目标跟踪中目标模型更新问题的半监督学习算法研究. 物理学报, 2015, 64(1): 014205. doi: 10.7498/aps.64.014205
    [14] 冯朝文, 蔡 理, 李 芹. 基于单电子器件的细胞神经网络实现及应用研究. 物理学报, 2008, 57(4): 2462-2467. doi: 10.7498/aps.57.2462
    [15] 吴忠强, 谭拂晓, 王绍仙. 基于无源化的细胞神经网络超混沌系统同步. 物理学报, 2006, 55(4): 1651-1658. doi: 10.7498/aps.55.1651
    [16] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [17] 林琨智. 无反射势阱中粒子运动的双波函数描述. 物理学报, 1996, 45(3): 360-369. doi: 10.7498/aps.45.360
    [18] 孙润广, 张静, 戴正华, 徐逢勋, 王德华. 用小角X射线散射法和31P核磁共振技术研究蓖麻酸对磷脂胆固醇混合脂质体液晶态结构的影响. 物理学报, 1994, 43(4): 616-621. doi: 10.7498/aps.43.616
    [19] 李富斌. 用细胞自动机方法构造非平衡相变模型. 物理学报, 1992, 41(11): 1837-1841. doi: 10.7498/aps.41.1837
    [20] 张宗燧. 李模型中极点的运动. 物理学报, 1965, 21(11): 1882-1888. doi: 10.7498/aps.21.1882
计量
  • 文章访问数:  2056
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 修回日期:  2024-07-31
  • 上网日期:  2024-08-15
  • 刊出日期:  2024-09-20

/

返回文章
返回