搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下金属钽液体中拓扑密堆团簇对凝固路径的影响规律

莫云飞 蒋丽贵 稂林 文大东 张海涛 李媛 田泽安 彭平 刘让苏

引用本文:
Citation:

高压下金属钽液体中拓扑密堆团簇对凝固路径的影响规律

莫云飞, 蒋丽贵, 稂林, 文大东, 张海涛, 李媛, 田泽安, 彭平, 刘让苏
cstr: 32037.14.aps.73.20241089

Influence of topologically close-packed clusters on the solidification pathway of metallic tantalum liquid under high pressure

Mo Yun-Fei, Jiang Li-Gui, Lang Lin, Wen Da-Dong, Zhang Hai-Tao, Li Yuan, Tian Ze-An, Peng Ping, Liu Rang-Su
cstr: 32037.14.aps.73.20241089
PDF
HTML
导出引用
  • 金属液体(或过冷液体)中的主要微观结构对最终的凝固路径(晶化或非晶化)起着决定性作用, 何种微观结构将扮演关键性角色一直处在不断的被探索和研究中. 本文采用分子动力学方法模拟研究金属钽(tantalum, Ta)液体在不同压强下的快速凝固过程, 通过原子平均能量、双体分布函数和最大标准团簇分析方法, 对凝固过程中的微观结构演变进行量化分析. 研究结果表明, 相比于低含量的二十面体, 拓扑密堆(topologically close-packed, TCP)团簇在金属Ta液体中扮演着关键角色, 它不仅含量更高, 而且更能对凝固路径起决定性作用. 当压强P∈[0, 8.75] GPa时, 金属Ta液体中的TCP团簇不仅处于能量低且稳定性好的状态, 同时TCP团簇相互连结程度高而不容易被分解, 从而促进金属Ta液体发生非晶转变; 当压强P∈[9.375, 50] GPa时, 金属Ta液体中TCP团簇处于亚稳定状态, 且很多高能量的TCP团簇在液固转变过程中容易转变成其他团簇, 此时体心立方(body-centered cubic, BCC)晶胚容易在TCP团簇堆积稀疏区域形核和长大, 最终金属Ta液体转变成比较完美的BCC晶体.
    The main microstructures in metallic liquids (or supercooled liquids) play a decisive role in determining the final solidification pathway (crystallization or amorphization). However, what kind of microstructure plays a critical role is constantly explored and studied by scholars. Some of previous theoretical and experimental studies have suggested that icosahedron (ICO) clusters (or ICO short-range order) in metallic liquids possess lower energy than their corresponding crystals, and high abundance of ICO clusters can increase the nucleation barriers and promote amorphous transformation. Current research results indicate that the content of various clusters (especially ICO clusters) in many metallic liquids is relatively low. Therefore, it is significant to identify which microstructure plays a critical role in metallic liquids.In this work, the rapid solidification processes of tantalum (Ta) metallic liquid under various pressure conditions are investigated by using molecular dynamic (MD) simulation, and the microstructure evolutions in different solidification processes are quantitatively analyzed through the average atomic energy, pair distribution function, and largest standard cluster analysis (LaSCA). The results show that, compared with the cluster with low content of ICO, topologically close-packed (TCP) clusters are not only more abundant but also play a more decisive role in determining the solidification path of Ta metallic liquids. At a pressure P∈[0, 8.75] GPa, the TCP clusters in Ta metallic liquid not only exhibit low energy and a highly stable state, but also are highly interconnected with each other and resist decomposition, thereby promoting the amorphous transformation of the Ta metallic liquid. At pressure P∈[9.375, 50] GPa, the TCP clusters in Ta metallic liquid are in a metastable state, many TCP clusters with high energy state can easily transform into other clusters in the liquid-solid transition process. In this stage, nucleation and growth of the body-centered cubic (BCC) embryo occur mainly in areas where TCP clusters are stacked sparsely, eventually Ta metallic liquid forms a perfect BCC crystal .
      通信作者: 稂林, 12020013@hnist.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12004053)和湖南省教育厅重点和一般研究基金(批准号: 23A0492, 22C0581)资助的课题.
      Corresponding author: Lang Lin, 12020013@hnist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004053) and the Scientific Research Fund of Education Department of Hunan Province, China (Grant Nos. 23A0492, 22C0581).
    [1]

    Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei B B 2024 Adv. Mater. 36 2313162Google Scholar

    [2]

    Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar

    [3]

    Wang H P, Li M X, Zou P F, Cai X, Hu L, Wei B B 2018 Phys. Rev. B. 98 063106Google Scholar

    [4]

    Zou P F, Wang H P, Yang S J, Hu L, Wei B B 2018 Metall. Mater. Trans. A 49 5488Google Scholar

    [5]

    陈长军, 张超, 王晓南, 张敏, 敬和民 2014 热加工工艺 43 5Google Scholar

    Chen C J, Zhang C, Wang X N, Zhang M, Jing H M 2014 Hot Working Technology 43 5Google Scholar

    [6]

    何季麟, 张学清, 杨国启, 郑爱国 2014 中国材料进展 33 545Google Scholar

    He J L, Zhang X Q, Yang Q G, Zheng A G 2014 Mater. China 33 545Google Scholar

    [7]

    张嘉祺, 巩琛, 冯典英, 黄辉, 李颖, 李本涛 2024 山东化工 53 94Google Scholar

    Zhang J Y, Gong C, Feng D Y, Huang H, Li Y, Li B T 2024 Shandong Chem. Industry 53 94Google Scholar

    [8]

    Gladczuk L, Patel A, Demaree J D, Sosnowski M 2005 Thin Solid Films 476 295Google Scholar

    [9]

    Marcus R B, Quigley S 1968 Thin Solid Films 2 467Google Scholar

    [10]

    Read M H, Altman C 1965 Appl. Phys. Lett. 7 51Google Scholar

    [11]

    Janish M T, Kotula P G, Boyce B L, Carter C B 2015 J. Mater. Sci. 50 3706Google Scholar

    [12]

    Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H, Yang L H 2002 J. Phys. Condens. Mater. 14 2825Google Scholar

    [13]

    Moriarty J A 1990 Phys. Rev. B 42 1609Google Scholar

    [14]

    Moriarty J A 1994 Phys. Rev. B 49 12431Google Scholar

    [15]

    Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Soderlind P, Streitz F H, Tang M J, Yang L H 2006 J. Mater. Res. 21 563Google Scholar

    [16]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [17]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43Google Scholar

    [18]

    Kelton K, Gangopadhyay A K, Kim T H, Lee G W 2006 J. Non. Cryst. Solid 352 5318Google Scholar

    [19]

    Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D 2002 Phys. Rev. Lett. 89 075507Google Scholar

    [20]

    Zhang J C, Chen C, Pei Q X, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [21]

    Chen L Y, Mohr M, Wunderlich R K, Fecht H J, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2019 J. Mol. Liq. 293 111544Google Scholar

    [22]

    Sheng H W, Ma E, Kramer M J 2012 JOM 64 856Google Scholar

    [23]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [24]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metall. Sin. 53 1659Google Scholar

    [25]

    Angell C A 1995 Science 267 1924Google Scholar

    [26]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587Google Scholar

    [27]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B. 77 024103Google Scholar

    [28]

    Liu Z L, Zhang X L, Cai L C, Chen X R, Wu Q, Jing F Q 2008 J. Phys. Chem. Solids 69 2833Google Scholar

    [29]

    Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T 2021 Phys. Rev. Lett. 126 175503Google Scholar

    [30]

    Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys 20 28088Google Scholar

    [31]

    Tian Z A, Zhang Z Y, Jiang X, Wei F, Ping S, Wu F 2023 Metals 13 415Google Scholar

    [32]

    Mo Y F, Tian Z A, Zhou L L, Liang Y C, Dong K J, Zhang X F, Zhang H T, Peng P, Liu R S 2024 Chem. Phys. 581 112238Google Scholar

    [33]

    Mōller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra T A, Fernández J M, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta R P 2024 Phys. Rev. Lett. 132 206102Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [36]

    https://sites.google. com/site/eampotentials/ta [2024-8-3]

    [37]

    Mo Y F, Tian Z A, Lang L, Zhou L L, Liang Y C, Zhang H T, Liu R S, Peng P, Wen D D 2020 Phy. Chem. Chem. Phys. 22 18078Google Scholar

    [38]

    文大冬, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平 2020 物理学报 69 196101Google Scholar

    We D D, Deng Y H, Dai X Y, Wu A R, Tian Z A, Peng P 2020 Acta Phys. Sin. 69 196101Google Scholar

    [39]

    Kbirou M, Atila A, Hasnaoui A 2024 Phys. Scr. 99 085946Google Scholar

    [40]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar

    [41]

    Fan X, Pan D, Li M 2019 J. Phys. Condens. Matte 31 095402Google Scholar

    [42]

    Guder V, Celtek M, Celik F A, Sengul S 2023 J. Non-Cryst. Solid 602 122067Google Scholar

    [43]

    Chen Y X, Feng S D, Lu X Q, Kang H, Ngai K L, Wang L M 2022 J. Mol. Liq. 368 120706Google Scholar

    [44]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [45]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [46]

    Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X, Guan P F 2022 J. Non-Cryst. Solid 576 121247Google Scholar

    [47]

    Jafary-Zadeh M, Aitken Z H, Tavakoli R, Zhang Y W 2018 J. Alloys Compd. 748 679Google Scholar

  • 图 1  BCC和某一类TCP团簇的拓扑结构 (a) 中心原子标号为9655的BCC最大标准团簇; (b) 由根对原子(标号: 9655与5676)与4个共有近邻原子构成的共有近邻子团簇444; (c)图(b)中4个共有近邻原子的拓扑结构; (d), (e)分别表示图(a)中的另一类共有近邻子团簇666和6个共有近邻原子的拓扑结构; (f) 中心原子标号为9875的TCP最大标准团簇; (g), (i)分别表示图(f)中两类共有近邻子团簇555和666; (h), (j) 分别表示图(g)和(i)中共有近邻原子的拓扑结构

    Fig. 1.  Topology of BCC and one kind of TCP clusters: (a) A BCC LaSC with a central atom (9655); (b) a CNS of 444 composed of an interconnected root pair (9655 and 5676) and 4 CNNs; (c) the topology of 4 CNNs in panel (b); (d), (e) another CNS of 666 and the topology of 6 CNNs respectively; (f) a TCP LaSC with a central atom (9875); (g), (i) another two CNS of 555 and 666 respectively; (h), (j) the topology of CNNs in panel (g) and (i) respectively.

    图 2  不同压强下系统的原子平均势能量随温度的关系

    Fig. 2.  Average atomic potential energy of system dependence of the temperature under different pressure.

    图 3  S(q)和g(r)曲线随温度的演变关系 (a) 0 GPa下的S(q)曲线; (b), (c) 5 GPa和30 GPa下的g(r)曲线; (d) 100 K时g(r)曲线随压强的演变关系

    Fig. 3.  S(q) and g(r) curves as a function of temperature: (a) S(q) curves under 0 GPa; (b), (c) the g(r) curves under 5 GPa and 30 GPa respectively; (d) g(r) curves dependence of pressure at 100 K.

    图 4  共有近邻子团簇CNS的百分比与温度的关系 (a) 5 GPa; (b) 30 GPa

    Fig. 4.  Percentage of CNS dependence of temperature: (a) 5 GPa; (b) 30 GPa.

    图 5  不同压强下且100 K时CNS的百分含量分布图 (a), (c) 555, 544和433; (b), (d) 444和666

    Fig. 5.  At 100 K, the distribution figure for the percentage of the CNS under different pressure: (a), (c) 555, 544 and 433; (b), (d) 444 and 666.

    图 6  主要LaSC百分比在凝固过程中的演变 (a) 5 GPa; (b) 30 GPa; (c) 9.375—50 GPa 下BCC 晶体团簇百分比在凝固过程的演变及对比

    Fig. 6.  Percentage of several main LaSCs as a function temperature: (a) 5 GPa; (b) 30 GPa; (c) evolution and comparison of the percentage of BCC crystal clusters during the solidification process under pressure P∈[9.375, 50] GPa.

    图 7  压强为5 GPa和30 GPa时, (a) TCP团簇和BCC团簇百分比与温度的关系, 以及(b) TCP原子和BCC原子的平均势能与温度的关系

    Fig. 7.  (a) Percentage of TCP and BCC LaSC dependence of temperature; (b) the average atomic potential energy of TCP and BCC atoms dependence of temperature. The pressure is 5 GPa and 30 GPa

    图 8  选定温度下TCP原子和BCC原子的三维空间分布图 (a)—(d) 5 GPa; (e)—(h) 30 GPa; 白色原子代表TCP原子, 蓝色原子代表BCC原子

    Fig. 8.  Snapshots of the samples at selected temperatures for TCP and BCC atoms: (a)–(d) 5 GPa; (e)–(h) 30 GPa. Colour configuration: white and blue balls represent TCP and BCC atoms, respectively.

  • [1]

    Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei B B 2024 Adv. Mater. 36 2313162Google Scholar

    [2]

    Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar

    [3]

    Wang H P, Li M X, Zou P F, Cai X, Hu L, Wei B B 2018 Phys. Rev. B. 98 063106Google Scholar

    [4]

    Zou P F, Wang H P, Yang S J, Hu L, Wei B B 2018 Metall. Mater. Trans. A 49 5488Google Scholar

    [5]

    陈长军, 张超, 王晓南, 张敏, 敬和民 2014 热加工工艺 43 5Google Scholar

    Chen C J, Zhang C, Wang X N, Zhang M, Jing H M 2014 Hot Working Technology 43 5Google Scholar

    [6]

    何季麟, 张学清, 杨国启, 郑爱国 2014 中国材料进展 33 545Google Scholar

    He J L, Zhang X Q, Yang Q G, Zheng A G 2014 Mater. China 33 545Google Scholar

    [7]

    张嘉祺, 巩琛, 冯典英, 黄辉, 李颖, 李本涛 2024 山东化工 53 94Google Scholar

    Zhang J Y, Gong C, Feng D Y, Huang H, Li Y, Li B T 2024 Shandong Chem. Industry 53 94Google Scholar

    [8]

    Gladczuk L, Patel A, Demaree J D, Sosnowski M 2005 Thin Solid Films 476 295Google Scholar

    [9]

    Marcus R B, Quigley S 1968 Thin Solid Films 2 467Google Scholar

    [10]

    Read M H, Altman C 1965 Appl. Phys. Lett. 7 51Google Scholar

    [11]

    Janish M T, Kotula P G, Boyce B L, Carter C B 2015 J. Mater. Sci. 50 3706Google Scholar

    [12]

    Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H, Yang L H 2002 J. Phys. Condens. Mater. 14 2825Google Scholar

    [13]

    Moriarty J A 1990 Phys. Rev. B 42 1609Google Scholar

    [14]

    Moriarty J A 1994 Phys. Rev. B 49 12431Google Scholar

    [15]

    Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Soderlind P, Streitz F H, Tang M J, Yang L H 2006 J. Mater. Res. 21 563Google Scholar

    [16]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [17]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43Google Scholar

    [18]

    Kelton K, Gangopadhyay A K, Kim T H, Lee G W 2006 J. Non. Cryst. Solid 352 5318Google Scholar

    [19]

    Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D 2002 Phys. Rev. Lett. 89 075507Google Scholar

    [20]

    Zhang J C, Chen C, Pei Q X, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [21]

    Chen L Y, Mohr M, Wunderlich R K, Fecht H J, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2019 J. Mol. Liq. 293 111544Google Scholar

    [22]

    Sheng H W, Ma E, Kramer M J 2012 JOM 64 856Google Scholar

    [23]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [24]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metall. Sin. 53 1659Google Scholar

    [25]

    Angell C A 1995 Science 267 1924Google Scholar

    [26]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587Google Scholar

    [27]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B. 77 024103Google Scholar

    [28]

    Liu Z L, Zhang X L, Cai L C, Chen X R, Wu Q, Jing F Q 2008 J. Phys. Chem. Solids 69 2833Google Scholar

    [29]

    Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T 2021 Phys. Rev. Lett. 126 175503Google Scholar

    [30]

    Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys 20 28088Google Scholar

    [31]

    Tian Z A, Zhang Z Y, Jiang X, Wei F, Ping S, Wu F 2023 Metals 13 415Google Scholar

    [32]

    Mo Y F, Tian Z A, Zhou L L, Liang Y C, Dong K J, Zhang X F, Zhang H T, Peng P, Liu R S 2024 Chem. Phys. 581 112238Google Scholar

    [33]

    Mōller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra T A, Fernández J M, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta R P 2024 Phys. Rev. Lett. 132 206102Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [36]

    https://sites.google. com/site/eampotentials/ta [2024-8-3]

    [37]

    Mo Y F, Tian Z A, Lang L, Zhou L L, Liang Y C, Zhang H T, Liu R S, Peng P, Wen D D 2020 Phy. Chem. Chem. Phys. 22 18078Google Scholar

    [38]

    文大冬, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平 2020 物理学报 69 196101Google Scholar

    We D D, Deng Y H, Dai X Y, Wu A R, Tian Z A, Peng P 2020 Acta Phys. Sin. 69 196101Google Scholar

    [39]

    Kbirou M, Atila A, Hasnaoui A 2024 Phys. Scr. 99 085946Google Scholar

    [40]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar

    [41]

    Fan X, Pan D, Li M 2019 J. Phys. Condens. Matte 31 095402Google Scholar

    [42]

    Guder V, Celtek M, Celik F A, Sengul S 2023 J. Non-Cryst. Solid 602 122067Google Scholar

    [43]

    Chen Y X, Feng S D, Lu X Q, Kang H, Ngai K L, Wang L M 2022 J. Mol. Liq. 368 120706Google Scholar

    [44]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [45]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [46]

    Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X, Guan P F 2022 J. Non-Cryst. Solid 576 121247Google Scholar

    [47]

    Jafary-Zadeh M, Aitken Z H, Tavakoli R, Zhang Y W 2018 J. Alloys Compd. 748 679Google Scholar

  • [1] 吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄. 冷速对液态金属Mg凝固过程中微观结构演变的影响. 物理学报, 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [2] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [3] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数. 物理学报, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [4] 文大东, 彭平, 蒋元祺, 田泽安, 刘让苏. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪. 物理学报, 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [5] 蔡杰, 季乐, 杨盛志, 张在强, 刘世超, 李艳, 王晓彤, 关庆丰. 强流脉冲电子束作用下金属锆的微观结构与应力状态. 物理学报, 2013, 62(15): 156106. doi: 10.7498/aps.62.156106
    [6] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究. 物理学报, 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [7] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [8] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [9] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [10] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 樊星, 龚伟. 高分子有机场效应晶体管中半导体薄膜结晶行为及微观结构变化的研究. 物理学报, 2011, 60(2): 027201. doi: 10.7498/aps.60.027201
    [11] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [12] 徐锦锋, 代富平, 魏炳波. 急冷条件下Cu-Pb偏晶合金的相分离研究. 物理学报, 2007, 56(7): 3996-4003. doi: 10.7498/aps.56.3996
    [13] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [14] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [16] 朱才镇, 张培新, 许启明, 刘剑洪, 任祥忠, 张黔玲, 洪伟良, 李琳琳. 分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变. 物理学报, 2006, 55(9): 4795-4802. doi: 10.7498/aps.55.4795
    [17] 刘让苏, 覃树萍, 侯兆阳, 陈晓莹, 刘凤翔. 液态金属In凝固过程中微观结构转变的模拟研究. 物理学报, 2004, 53(9): 3119-3124. doi: 10.7498/aps.53.3119
    [18] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 陶向明, 曾耀武, 冯春木, 焦正宽, 叶高翔. 沉积在液体衬底上连续铝薄膜的微观结构. 物理学报, 2000, 49(11): 2235-2239. doi: 10.7498/aps.49.2235
计量
  • 文章访问数:  799
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-04
  • 修回日期:  2024-09-03
  • 上网日期:  2024-09-27
  • 刊出日期:  2024-11-05

/

返回文章
返回