-
金属液体(或过冷液体)中的主要微观结构对最终的凝固路径(晶化或非晶化)起着决定性作用, 何种微观结构将扮演关键性角色一直处在不断的被探索和研究中. 本文采用分子动力学方法模拟研究金属钽(tantalum, Ta)液体在不同压强下的快速凝固过程, 通过原子平均能量、双体分布函数和最大标准团簇分析方法, 对凝固过程中的微观结构演变进行量化分析. 研究结果表明, 相比于低含量的二十面体, 拓扑密堆(topologically close-packed, TCP)团簇在金属Ta液体中扮演着关键角色, 它不仅含量更高, 而且更能对凝固路径起决定性作用. 当压强P∈[0, 8.75] GPa时, 金属Ta液体中的TCP团簇不仅处于能量低且稳定性好的状态, 同时TCP团簇相互连结程度高而不容易被分解, 从而促进金属Ta液体发生非晶转变; 当压强P∈[9.375, 50] GPa时, 金属Ta液体中TCP团簇处于亚稳定状态, 且很多高能量的TCP团簇在液固转变过程中容易转变成其他团簇, 此时体心立方(body-centered cubic, BCC)晶胚容易在TCP团簇堆积稀疏区域形核和长大, 最终金属Ta液体转变成比较完美的BCC晶体.
The main microstructures in metallic liquids (or supercooled liquids) play a decisive role in determining the final solidification pathway (crystallization or amorphization). However, what kind of microstructure plays a critical role is constantly explored and studied by scholars. Some of previous theoretical and experimental studies have suggested that icosahedron (ICO) clusters (or ICO short-range order) in metallic liquids possess lower energy than their corresponding crystals, and high abundance of ICO clusters can increase the nucleation barriers and promote amorphous transformation. Current research results indicate that the content of various clusters (especially ICO clusters) in many metallic liquids is relatively low. Therefore, it is significant to identify which microstructure plays a critical role in metallic liquids. In this work, the rapid solidification processes of tantalum (Ta) metallic liquid under various pressure conditions are investigated by using molecular dynamic (MD) simulation, and the microstructure evolutions in different solidification processes are quantitatively analyzed through the average atomic energy, pair distribution function, and largest standard cluster analysis (LaSCA). The results show that, compared with the cluster with low content of ICO, topologically close-packed (TCP) clusters are not only more abundant but also play a more decisive role in determining the solidification path of Ta metallic liquids. At a pressure P∈[0, 8.75] GPa, the TCP clusters in Ta metallic liquid not only exhibit low energy and a highly stable state, but also are highly interconnected with each other and resist decomposition, thereby promoting the amorphous transformation of the Ta metallic liquid. At pressure P∈[9.375, 50] GPa, the TCP clusters in Ta metallic liquid are in a metastable state, many TCP clusters with high energy state can easily transform into other clusters in the liquid-solid transition process. In this stage, nucleation and growth of the body-centered cubic (BCC) embryo occur mainly in areas where TCP clusters are stacked sparsely, eventually Ta metallic liquid forms a perfect BCC crystal . -
Keywords:
- Ta metallic liquid /
- molecular dynamics /
- rapid solidification /
- microstructure
[1] Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei B B 2024 Adv. Mater. 36 2313162Google Scholar
[2] Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar
[3] Wang H P, Li M X, Zou P F, Cai X, Hu L, Wei B B 2018 Phys. Rev. B. 98 063106Google Scholar
[4] Zou P F, Wang H P, Yang S J, Hu L, Wei B B 2018 Metall. Mater. Trans. A 49 5488Google Scholar
[5] 陈长军, 张超, 王晓南, 张敏, 敬和民 2014 热加工工艺 43 5Google Scholar
Chen C J, Zhang C, Wang X N, Zhang M, Jing H M 2014 Hot Working Technology 43 5Google Scholar
[6] 何季麟, 张学清, 杨国启, 郑爱国 2014 中国材料进展 33 545Google Scholar
He J L, Zhang X Q, Yang Q G, Zheng A G 2014 Mater. China 33 545Google Scholar
[7] 张嘉祺, 巩琛, 冯典英, 黄辉, 李颖, 李本涛 2024 山东化工 53 94Google Scholar
Zhang J Y, Gong C, Feng D Y, Huang H, Li Y, Li B T 2024 Shandong Chem. Industry 53 94Google Scholar
[8] Gladczuk L, Patel A, Demaree J D, Sosnowski M 2005 Thin Solid Films 476 295Google Scholar
[9] Marcus R B, Quigley S 1968 Thin Solid Films 2 467Google Scholar
[10] Read M H, Altman C 1965 Appl. Phys. Lett. 7 51Google Scholar
[11] Janish M T, Kotula P G, Boyce B L, Carter C B 2015 J. Mater. Sci. 50 3706Google Scholar
[12] Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H, Yang L H 2002 J. Phys. Condens. Mater. 14 2825Google Scholar
[13] Moriarty J A 1990 Phys. Rev. B 42 1609Google Scholar
[14] Moriarty J A 1994 Phys. Rev. B 49 12431Google Scholar
[15] Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Soderlind P, Streitz F H, Tang M J, Yang L H 2006 J. Mater. Res. 21 563Google Scholar
[16] Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar
[17] Frank F C 1952 Proc. R. Soc. Lond. A 215 43Google Scholar
[18] Kelton K, Gangopadhyay A K, Kim T H, Lee G W 2006 J. Non. Cryst. Solid 352 5318Google Scholar
[19] Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D 2002 Phys. Rev. Lett. 89 075507Google Scholar
[20] Zhang J C, Chen C, Pei Q X, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar
[21] Chen L Y, Mohr M, Wunderlich R K, Fecht H J, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2019 J. Mol. Liq. 293 111544Google Scholar
[22] Sheng H W, Ma E, Kramer M J 2012 JOM 64 856Google Scholar
[23] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar
[24] 彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar
Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metall. Sin. 53 1659Google Scholar
[25] Angell C A 1995 Science 267 1924Google Scholar
[26] Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587Google Scholar
[27] Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B. 77 024103Google Scholar
[28] Liu Z L, Zhang X L, Cai L C, Chen X R, Wu Q, Jing F Q 2008 J. Phys. Chem. Solids 69 2833Google Scholar
[29] Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T 2021 Phys. Rev. Lett. 126 175503Google Scholar
[30] Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys 20 28088Google Scholar
[31] Tian Z A, Zhang Z Y, Jiang X, Wei F, Ping S, Wu F 2023 Metals 13 415Google Scholar
[32] Mo Y F, Tian Z A, Zhou L L, Liang Y C, Dong K J, Zhang X F, Zhang H T, Peng P, Liu R S 2024 Chem. Phys. 581 112238Google Scholar
[33] Mōller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra T A, Fernández J M, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta R P 2024 Phys. Rev. Lett. 132 206102Google Scholar
[34] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[35] Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar
[36] https://sites.google. com/site/eampotentials/ta [2024-8-3]
[37] Mo Y F, Tian Z A, Lang L, Zhou L L, Liang Y C, Zhang H T, Liu R S, Peng P, Wen D D 2020 Phy. Chem. Chem. Phys. 22 18078Google Scholar
[38] 文大冬, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平 2020 物理学报 69 196101Google Scholar
We D D, Deng Y H, Dai X Y, Wu A R, Tian Z A, Peng P 2020 Acta Phys. Sin. 69 196101Google Scholar
[39] Kbirou M, Atila A, Hasnaoui A 2024 Phys. Scr. 99 085946Google Scholar
[40] Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar
[41] Fan X, Pan D, Li M 2019 J. Phys. Condens. Matte 31 095402Google Scholar
[42] Guder V, Celtek M, Celik F A, Sengul S 2023 J. Non-Cryst. Solid 602 122067Google Scholar
[43] Chen Y X, Feng S D, Lu X Q, Kang H, Ngai K L, Wang L M 2022 J. Mol. Liq. 368 120706Google Scholar
[44] Nosé S 1984 J. Chem. Phys. 81 511Google Scholar
[45] Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar
[46] Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X, Guan P F 2022 J. Non-Cryst. Solid 576 121247Google Scholar
[47] Jafary-Zadeh M, Aitken Z H, Tavakoli R, Zhang Y W 2018 J. Alloys Compd. 748 679Google Scholar
-
图 1 BCC和某一类TCP团簇的拓扑结构 (a) 中心原子标号为9655的BCC最大标准团簇; (b) 由根对原子(标号: 9655与5676)与4个共有近邻原子构成的共有近邻子团簇444; (c)图(b)中4个共有近邻原子的拓扑结构; (d), (e)分别表示图(a)中的另一类共有近邻子团簇666和6个共有近邻原子的拓扑结构; (f) 中心原子标号为9875的TCP最大标准团簇; (g), (i)分别表示图(f)中两类共有近邻子团簇555和666; (h), (j) 分别表示图(g)和(i)中共有近邻原子的拓扑结构
Fig. 1. Topology of BCC and one kind of TCP clusters: (a) A BCC LaSC with a central atom (9655); (b) a CNS of 444 composed of an interconnected root pair (9655 and 5676) and 4 CNNs; (c) the topology of 4 CNNs in panel (b); (d), (e) another CNS of 666 and the topology of 6 CNNs respectively; (f) a TCP LaSC with a central atom (9875); (g), (i) another two CNS of 555 and 666 respectively; (h), (j) the topology of CNNs in panel (g) and (i) respectively.
图 6 主要LaSC百分比在凝固过程中的演变 (a) 5 GPa; (b) 30 GPa; (c) 9.375—50 GPa 下BCC 晶体团簇百分比在凝固过程的演变及对比
Fig. 6. Percentage of several main LaSCs as a function temperature: (a) 5 GPa; (b) 30 GPa; (c) evolution and comparison of the percentage of BCC crystal clusters during the solidification process under pressure P∈[9.375, 50] GPa.
-
[1] Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei B B 2024 Adv. Mater. 36 2313162Google Scholar
[2] Wang Q, Zhai B, Wang H P, Wei B 2021 J. Appl. Phys. 130 185103Google Scholar
[3] Wang H P, Li M X, Zou P F, Cai X, Hu L, Wei B B 2018 Phys. Rev. B. 98 063106Google Scholar
[4] Zou P F, Wang H P, Yang S J, Hu L, Wei B B 2018 Metall. Mater. Trans. A 49 5488Google Scholar
[5] 陈长军, 张超, 王晓南, 张敏, 敬和民 2014 热加工工艺 43 5Google Scholar
Chen C J, Zhang C, Wang X N, Zhang M, Jing H M 2014 Hot Working Technology 43 5Google Scholar
[6] 何季麟, 张学清, 杨国启, 郑爱国 2014 中国材料进展 33 545Google Scholar
He J L, Zhang X Q, Yang Q G, Zheng A G 2014 Mater. China 33 545Google Scholar
[7] 张嘉祺, 巩琛, 冯典英, 黄辉, 李颖, 李本涛 2024 山东化工 53 94Google Scholar
Zhang J Y, Gong C, Feng D Y, Huang H, Li Y, Li B T 2024 Shandong Chem. Industry 53 94Google Scholar
[8] Gladczuk L, Patel A, Demaree J D, Sosnowski M 2005 Thin Solid Films 476 295Google Scholar
[9] Marcus R B, Quigley S 1968 Thin Solid Films 2 467Google Scholar
[10] Read M H, Altman C 1965 Appl. Phys. Lett. 7 51Google Scholar
[11] Janish M T, Kotula P G, Boyce B L, Carter C B 2015 J. Mater. Sci. 50 3706Google Scholar
[12] Moriarty J A, Belak J F, Rudd R E, Soderlind P, Streitz F H, Yang L H 2002 J. Phys. Condens. Mater. 14 2825Google Scholar
[13] Moriarty J A 1990 Phys. Rev. B 42 1609Google Scholar
[14] Moriarty J A 1994 Phys. Rev. B 49 12431Google Scholar
[15] Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Soderlind P, Streitz F H, Tang M J, Yang L H 2006 J. Mater. Res. 21 563Google Scholar
[16] Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar
[17] Frank F C 1952 Proc. R. Soc. Lond. A 215 43Google Scholar
[18] Kelton K, Gangopadhyay A K, Kim T H, Lee G W 2006 J. Non. Cryst. Solid 352 5318Google Scholar
[19] Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D 2002 Phys. Rev. Lett. 89 075507Google Scholar
[20] Zhang J C, Chen C, Pei Q X, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar
[21] Chen L Y, Mohr M, Wunderlich R K, Fecht H J, Wang X D, Cao Q P, Zhang D X, Jiang J Z 2019 J. Mol. Liq. 293 111544Google Scholar
[22] Sheng H W, Ma E, Kramer M J 2012 JOM 64 856Google Scholar
[23] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar
[24] 彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar
Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metall. Sin. 53 1659Google Scholar
[25] Angell C A 1995 Science 267 1924Google Scholar
[26] Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587Google Scholar
[27] Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B. 77 024103Google Scholar
[28] Liu Z L, Zhang X L, Cai L C, Chen X R, Wu Q, Jing F Q 2008 J. Phys. Chem. Solids 69 2833Google Scholar
[29] Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T 2021 Phys. Rev. Lett. 126 175503Google Scholar
[30] Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys 20 28088Google Scholar
[31] Tian Z A, Zhang Z Y, Jiang X, Wei F, Ping S, Wu F 2023 Metals 13 415Google Scholar
[32] Mo Y F, Tian Z A, Zhou L L, Liang Y C, Dong K J, Zhang X F, Zhang H T, Peng P, Liu R S 2024 Chem. Phys. 581 112238Google Scholar
[33] Mōller J, Schottelius A, Caresana M, Boesenberg U, Kim C, Dallari F, Ezquerra T A, Fernández J M, Gelisio L, Glaesener A, Goy C, Hallmann J, Kalinin A, Kurta R P 2024 Phys. Rev. Lett. 132 206102Google Scholar
[34] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[35] Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar
[36] https://sites.google. com/site/eampotentials/ta [2024-8-3]
[37] Mo Y F, Tian Z A, Lang L, Zhou L L, Liang Y C, Zhang H T, Liu R S, Peng P, Wen D D 2020 Phy. Chem. Chem. Phys. 22 18078Google Scholar
[38] 文大冬, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平 2020 物理学报 69 196101Google Scholar
We D D, Deng Y H, Dai X Y, Wu A R, Tian Z A, Peng P 2020 Acta Phys. Sin. 69 196101Google Scholar
[39] Kbirou M, Atila A, Hasnaoui A 2024 Phys. Scr. 99 085946Google Scholar
[40] Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar
[41] Fan X, Pan D, Li M 2019 J. Phys. Condens. Matte 31 095402Google Scholar
[42] Guder V, Celtek M, Celik F A, Sengul S 2023 J. Non-Cryst. Solid 602 122067Google Scholar
[43] Chen Y X, Feng S D, Lu X Q, Kang H, Ngai K L, Wang L M 2022 J. Mol. Liq. 368 120706Google Scholar
[44] Nosé S 1984 J. Chem. Phys. 81 511Google Scholar
[45] Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar
[46] Wang B, Shang B S, Gao X Q, Sun Y T, Qiao J C, Wang W H, Pan M X, Guan P F 2022 J. Non-Cryst. Solid 576 121247Google Scholar
[47] Jafary-Zadeh M, Aitken Z H, Tavakoli R, Zhang Y W 2018 J. Alloys Compd. 748 679Google Scholar
计量
- 文章访问数: 459
- PDF下载量: 35
- 被引次数: 0