搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率微波介质窗气体侧击穿特性的粒子-蒙特卡罗碰撞模拟

舒盼盼 赵朋程

引用本文:
Citation:

高功率微波介质窗气体侧击穿特性的粒子-蒙特卡罗碰撞模拟

舒盼盼, 赵朋程
cstr: 32037.14.aps.73.20241177

Particle-in-cell-Monte Carlo collision simulation study on gas side breakdown characteristics of high-power microwave dielectric window

Shu Pan-Pan, Zhao Peng-Cheng
cstr: 32037.14.aps.73.20241177
PDF
HTML
导出引用
  • 在高功率微波介质窗外表面周围, 气体击穿是限制功率容量提升的主要因素之一, 因此进行相应的模拟研究具有重要的意义. 本文通过粒子-蒙特卡罗碰撞模型对介质窗气体侧击穿特性进行了模拟研究. 将宏粒子合并方法引入该模型, 大大减少了跟踪的宏粒子数量, 以至于能够对整个击穿过程进行模拟与分析. 结果表明, 在宏粒子权重为变量下, 击穿的时空演化特性与宏粒子权重为常数下的结果符合得很好. 由于次级电子发射产额远小于1, 所以气体电离是介质窗气体侧击穿的主导机理. 电子电离和扩散导致等离子体的密度和厚度随着时间显著增加. 电子密度的峰值未出现在介质表面处而是在距离介质表面100—150 μm的位置. 这是因为大量的电子沉积在介质表面上, 伴随产生的自组织法向电场驱使电子远离介质表面. 由于本文关注的背景气体压强高于最大电离率对应的临界压强(约为1.33 × 103 Pa ), 所以电离率随着压强的增加而单调减小, 并导致击穿发展得更加缓慢. 通过比较击穿时间的模拟值与实验数据, 证实了粒子-蒙特卡罗碰撞模型的准确性.
    Gas breakdown is one of the key factors limiting the increase of power capacity of the outer surface of high-power microwave dielectric window. It is of great significance to conduct corresponding simulation studies. Compared with the fluid model, the particle-in-cell-Monte Carlo collision model has two advantages. One is that the influence of numerical dispersion and instability problems is insignificant, and the other is that it can accurately describe microphysical processes. Therefore, the breakdown characteristics on the gas side of dielectric window are simulated by using the particle-in-cell-Monte Carlo collision model. The two-in-one macro-particle merging method is introduced into the model, thereby greatly reducing the number of macro-particles tracked. Therefore, the whole breakdown process can be simulated and analyzed. The results show that the spatial and temporal evolution of breakdown under the variable macro-particle weight is in good agreement with that under the constant macro-particle weight. This suggests that the two-in-one macro-particle merging method is applicable under the simulation conditions of interest in this paper, i.e., when the ratio of the effective electric field of microwaves to the pressure is between $1.76\times10^3$ and $1.41\times10^4$ V/(m$\cdot$Torr). Since the yield of the secondary electron emission is much less than 1, gas ionization is the dominant mechanism of breakdown on the gas side of dielectric window. Electron ionization and electron diffusion lead the density and thickness of the plasma to significantly increase over time. The peak of electron density does not appear at the dielectric surface, but at a position of 100–150 μm away from the dielectric surface. This is because a large number of electrons are deposited on the dielectric surface, and the accompanying self-organized normal electric field drives the electrons away from the dielectric surface. Because the pressure of background gas of interest in this work is higher than the critical pressure corresponding to the maximum ionization rate (about 10 Torr), the ionization rate decreases monotonically with pressure increasing, resulting in a slower development of breakdown. The accuracy of the particle-in-cell-Monte Carlo collision model is confirmed by comparing the simulated values of breakdown time with experimental data. This work provides an important theoretical basis for understanding and controlling the breakdown on the gas side of dielectric window. The following figure (a) shows that the mean electron energy under the variable macro-particle weight agrees well with that under the constant macro-particle weight at about 100 Torr. The following figure (b) shows that when the plasma density is increased by a factor of 108, the breakdown process can be considered by using the particle-in-cell-Monte Carlo collision model and a two-in-one macro-particle merging method.
      通信作者: 赵朋程, pczhao@xidian.edu.cn
    • 基金项目: 陕西省自然科学基础研究计划(批准号: 2023-JC-YB-512, 2023-JC-YB-042)资助的课题.
      Corresponding author: Zhao Peng-Cheng, pczhao@xidian.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2023-JC-YB-512, 2023-JC-YB-042).
    [1]

    Schaub S C, Shapiro M A, Temkin R J 2019 Phys. Rev. Lett. 123 175001Google Scholar

    [2]

    杨浩, 黄诺慈, 刘星辰, 郑强林, 鲍向阳, 闫二艳 2024 强激光与粒子束 36 043031Google Scholar

    Yang H, Huang N C, Liu X C, Zheng Q L, Bao X Y, Yan E Y 2024 High Power Laser and Particle Beams 36 043031Google Scholar

    [3]

    Wen D Q, Zhang P, Krek J, Fu Y, Verboncoeur J P 2022 Phys. Rev. Lett. 129 045001Google Scholar

    [4]

    Chang C, Fang J Y, Zhang Z Q, Chen C, Tang C, Jin Q 2010 Appl. Phys. Lett. 97 141501Google Scholar

    [5]

    Zhao P, Wang R, Guo L 2022 Plasma Sources Sci. Technol. 31 095005Google Scholar

    [6]

    Wang H, Liu L, Liu D, Meng L 2022 IEEE Trans. Electron Dev. 69 4598Google Scholar

    [7]

    Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506Google Scholar

    [8]

    蔡利兵, 王建国 2010 物理学报 59 1143Google Scholar

    Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143Google Scholar

    [9]

    董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 067901Google Scholar

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901Google Scholar

    [10]

    常超 2018 科学通报 63 1391

    Chang C 2018 Chin Sci. Bull. 63 1391

    [11]

    左春彦, 高飞, 戴忠玲, 王友年 2018 物理学报 67 225201Google Scholar

    Zuo C Y, Gao F, Dai Z L, Wang Y N 2018 Acta Phys. Sin. 67 225201Google Scholar

    [12]

    舒盼盼, 赵朋程, 王瑞 2023 物理学报 72 095202Google Scholar

    Shu P P, Zhao P C, Wang R 2023 Acta Phys. Sin. 72 095202Google Scholar

    [13]

    Iqbal A, Wen D Q, Verboncoeur J, Zhang P 2023 High Voltage 8 1095Google Scholar

    [14]

    Zhao P, Liu Z, Wang R, Shu P, Guo L, Cao X 2024 Plasma Sci. Technol. 26 045401Google Scholar

    [15]

    孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男 2023 物理学报 72 107901Google Scholar

    Meng X C, Wang D, Cai Y H, Ye Z, He Y N, Xu Y N 2023 Acta Phys. Sin. 72 107901Google Scholar

    [16]

    Hu T, Zhu S, Zhao Y, Sun X, Yang J, He Y, Wang X, Bai C, Bai H, Wei H, Cao M, Hu Z, Liu M, Cui W 2022 Chin. Phys. B 31 047901Google Scholar

    [17]

    Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702Google Scholar

    [18]

    Chang C, Liu Y S, Verboncoeur J, Chen C H, Guo L T, Li S, Wu X L 2015 Appl. Phys. Lett. 106 014102Google Scholar

    [19]

    Langellotti S V, Brusstar A, Jordan N M, Lau Y Y, Gilgenbach R M 2023 IEEE Trans. Electron Dev. 70 5871Google Scholar

    [20]

    Zuo C Y, Gao F, Dai Z L, Wang Y N 2023 Phys. Plasmas 30 062101Google Scholar

    [21]

    Wen D Q, Iqbal A, Zhang P, Verboncoeur J P 2022 Appl. Phys. Lett. 121 164103Google Scholar

    [22]

    Zhang J, Jiang M, Luo W, Wang H, Li Y, Liu C 2020 J. Appl. Phys. 128 143301Google Scholar

    [23]

    Ford P J, Beeson S R, Krompholz H G, Neuber A A 2012 Phys. Plasmas 19 073503Google Scholar

    [24]

    周前红, 董烨, 董志伟, 周海京 2015 物理学报 64 085201Google Scholar

    Zhou Q H, Dong Y, Dong Z W, Zhou H J 2015 Acta Phys. Sin. 64 085201Google Scholar

    [25]

    Teunissen J, Ebert U 2014 J. Comput. Phys. 259 318Google Scholar

    [26]

    Peterson L R, Allen J E 1972 J. Chem. Phys. 56 6068Google Scholar

    [27]

    Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963Google Scholar

    [28]

    Lau Y Y, Verboncoeur J P, Kim H C 2006 Appl. Phys. Lett. 89 261501Google Scholar

  • 图 1  高功率微波作用下介质窗气体侧击穿的示意图

    Fig. 1.  Schematic diagram of breakdown on gas side of dielectric window of high power microwave.

    图 2  在背景气体压强为100 Torr和宏粒子权重分别为变量与常数下, (a)平均电子能量, 微波电场以及(b)电子数量随时间的变化

    Fig. 2.  The change of (a) mean electron energy, microwave electric field, and (b) number of electrons over time with the macro-particle weights as variables and constant, respectively. The background gas pressure is 100 Torr in this figure.

    图 3  在背景气体压强为100 Torr和宏粒子权重分别为变量与常数下, $ t=2.5\; {\mathrm{ns}}$时的电子数密度随坐标z的变化

    Fig. 3.  The variation of electron number density with coordinate z at time $ t=2.5\; {\mathrm{ns}}$ when the weights of macro–particles are variables and a constant, respectively. The background gas pressure is 100 Torr in this figure.

    图 4  在背景气体压强为100 Torr和宏粒子权重分别为变量与常数时, 代表电子的宏粒子数量随时间的变化

    Fig. 4.  The variation of the number of macro–particles representing electrons over time when the weights of macro–particles are variables and a constant, respectively. The background gas pressure is 100 Torr in this figure.

    图 5  背景气体压强为100 Torr下电子密度$ n_\mathrm{d} $随时间和空间的变化

    Fig. 5.  The variation of electron density $ n_\mathrm{d} $ with time and space under background gas pressure of 100 Torr.

    图 6  背景气体压强为100 Torr下带电粒子密度和自组织法向电场$ E_\mathrm{n} $在$ t=7 $ ns时的空间分布

    Fig. 6.  Spatial profiles of charged particle density and self-organizing normal electric field $ E_\mathrm{n} $ at time $ t=7 $ ns under background gas pressure of 100 Torr.

    图 7  背景气体压强分别为50, 100和200 Torr时电子数量随时间的变化

    Fig. 7.  Change in the number of electrons over time under background gas pressures of 50, 100 and 200 Torr.

    图 8  电离率与 次级电子发射产额关于时间的平均值$ \nu_{\mathrm{av}} $和$ \delta_{\mathrm{av}} $随背景气体压强的变化

    Fig. 8.  The average values $ \nu_{\mathrm{av}} $ and $ \delta_{\mathrm{av}} $ of ionization rate and secondary electron emission yield with respect to time as a function of background gas pressure.

    图 9  介质表面击穿时间的模拟值与实验数据[23]的对比

    Fig. 9.  Comparison between simulated values of dielectric surface breakdown time and experimental data[23].

    表 1  带电粒子与氩气之间的碰撞反应[26]

    Table 1.  Collision reaction between charged particles and argon gas[26].

    类型 碰撞表达式 反应阈值/eV
    弹性散射 e + Ar → e + Ar
    激发 e + Ar → e + Ar* 11.5
    电离 e + Ar → e + Ar+ + e 15.6
    电荷交换 Ar + Ar+ → Ar+ + Ar
    弹性散射 Ar + Ar+ → Ar + Ar+
    下载: 导出CSV
  • [1]

    Schaub S C, Shapiro M A, Temkin R J 2019 Phys. Rev. Lett. 123 175001Google Scholar

    [2]

    杨浩, 黄诺慈, 刘星辰, 郑强林, 鲍向阳, 闫二艳 2024 强激光与粒子束 36 043031Google Scholar

    Yang H, Huang N C, Liu X C, Zheng Q L, Bao X Y, Yan E Y 2024 High Power Laser and Particle Beams 36 043031Google Scholar

    [3]

    Wen D Q, Zhang P, Krek J, Fu Y, Verboncoeur J P 2022 Phys. Rev. Lett. 129 045001Google Scholar

    [4]

    Chang C, Fang J Y, Zhang Z Q, Chen C, Tang C, Jin Q 2010 Appl. Phys. Lett. 97 141501Google Scholar

    [5]

    Zhao P, Wang R, Guo L 2022 Plasma Sources Sci. Technol. 31 095005Google Scholar

    [6]

    Wang H, Liu L, Liu D, Meng L 2022 IEEE Trans. Electron Dev. 69 4598Google Scholar

    [7]

    Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506Google Scholar

    [8]

    蔡利兵, 王建国 2010 物理学报 59 1143Google Scholar

    Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143Google Scholar

    [9]

    董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 067901Google Scholar

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901Google Scholar

    [10]

    常超 2018 科学通报 63 1391

    Chang C 2018 Chin Sci. Bull. 63 1391

    [11]

    左春彦, 高飞, 戴忠玲, 王友年 2018 物理学报 67 225201Google Scholar

    Zuo C Y, Gao F, Dai Z L, Wang Y N 2018 Acta Phys. Sin. 67 225201Google Scholar

    [12]

    舒盼盼, 赵朋程, 王瑞 2023 物理学报 72 095202Google Scholar

    Shu P P, Zhao P C, Wang R 2023 Acta Phys. Sin. 72 095202Google Scholar

    [13]

    Iqbal A, Wen D Q, Verboncoeur J, Zhang P 2023 High Voltage 8 1095Google Scholar

    [14]

    Zhao P, Liu Z, Wang R, Shu P, Guo L, Cao X 2024 Plasma Sci. Technol. 26 045401Google Scholar

    [15]

    孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男 2023 物理学报 72 107901Google Scholar

    Meng X C, Wang D, Cai Y H, Ye Z, He Y N, Xu Y N 2023 Acta Phys. Sin. 72 107901Google Scholar

    [16]

    Hu T, Zhu S, Zhao Y, Sun X, Yang J, He Y, Wang X, Bai C, Bai H, Wei H, Cao M, Hu Z, Liu M, Cui W 2022 Chin. Phys. B 31 047901Google Scholar

    [17]

    Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702Google Scholar

    [18]

    Chang C, Liu Y S, Verboncoeur J, Chen C H, Guo L T, Li S, Wu X L 2015 Appl. Phys. Lett. 106 014102Google Scholar

    [19]

    Langellotti S V, Brusstar A, Jordan N M, Lau Y Y, Gilgenbach R M 2023 IEEE Trans. Electron Dev. 70 5871Google Scholar

    [20]

    Zuo C Y, Gao F, Dai Z L, Wang Y N 2023 Phys. Plasmas 30 062101Google Scholar

    [21]

    Wen D Q, Iqbal A, Zhang P, Verboncoeur J P 2022 Appl. Phys. Lett. 121 164103Google Scholar

    [22]

    Zhang J, Jiang M, Luo W, Wang H, Li Y, Liu C 2020 J. Appl. Phys. 128 143301Google Scholar

    [23]

    Ford P J, Beeson S R, Krompholz H G, Neuber A A 2012 Phys. Plasmas 19 073503Google Scholar

    [24]

    周前红, 董烨, 董志伟, 周海京 2015 物理学报 64 085201Google Scholar

    Zhou Q H, Dong Y, Dong Z W, Zhou H J 2015 Acta Phys. Sin. 64 085201Google Scholar

    [25]

    Teunissen J, Ebert U 2014 J. Comput. Phys. 259 318Google Scholar

    [26]

    Peterson L R, Allen J E 1972 J. Chem. Phys. 56 6068Google Scholar

    [27]

    Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963Google Scholar

    [28]

    Lau Y Y, Verboncoeur J P, Kim H C 2006 Appl. Phys. Lett. 89 261501Google Scholar

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性. 物理学报, 2024, 73(24): 1-9. doi: 10.7498/aps.73.20241300
    [2] 舒盼盼, 赵朋程, 王瑞. 110 GHz微波输出窗内表面次级电子倍增特性的电磁粒子模拟. 物理学报, 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [3] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究. 物理学报, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [4] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [5] 魏进进, 周东方, 余道杰, 胡涛, 侯德亭, 张德伟, 雷雪, 胡俊杰. 高功率微波作用下O-离子解吸附产生种子电子过程. 物理学报, 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [6] 唐涛. 高功率微波土壤击穿的数值验证研究. 物理学报, 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [7] 周前红, 董烨, 董志伟, 周海京. 介质表面附近微波大气击穿的理论研究. 物理学报, 2015, 64(8): 085201. doi: 10.7498/aps.64.085201
    [8] 宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红. 射频击穿等离子体对高功率微波传输特性的影响. 物理学报, 2014, 63(6): 064101. doi: 10.7498/aps.63.064101
    [9] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 释气对介质沿面闪络击穿影响的粒子模拟. 物理学报, 2014, 63(2): 027901. doi: 10.7498/aps.63.027901
    [10] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [11] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究. 物理学报, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [12] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [13] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [14] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究. 物理学报, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [15] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究. 物理学报, 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [17] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究. 物理学报, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [18] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响. 物理学报, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [19] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [20] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究. 物理学报, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
计量
  • 文章访问数:  223
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-10-09
  • 上网日期:  2024-10-28

/

返回文章
返回