搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性光纤中Fermi-Pasta-Ulam-Tsingou现象的稳定性分析

胡智 李金花 李萌萌 马佑桥 任海东

引用本文:
Citation:

非线性光纤中Fermi-Pasta-Ulam-Tsingou现象的稳定性分析

胡智, 李金花, 李萌萌, 马佑桥, 任海东
cstr: 32037.14.aps.73.20241380

Stability analysis of Fermi-Pasta-Ulam-Tsingou phenomenon in nonlinear optical fibers

Hu Zhi, Li Jin-Hua, Li Meng-Meng, Ma You-Qiao, Ren Hai-Dong
cstr: 32037.14.aps.73.20241380
PDF
HTML
导出引用
  • 稳定性是影响Fermi-Pasta-Ulam-Tsingou(FPUT)现象实验观测的一个十分重要的因素, 针对文献中FPUT现象稳定性分析贫乏的问题, 本文主要通过数值模拟方法研究非线性光纤中影响FPUT现象稳定性的主要因素. 本文采用的初始条件为实验上比较容易实现的正弦扰动平面波加上白色噪声, 发现增加扰动振幅及扰动信号与泵浦光之间的相位差均可极大程度的影响FPUT现象的稳定性. 结果表明: 1) 当扰动振幅从零逐渐增加时, 所观察到的FPUT现象的稳定性逐渐增强; 当扰动振幅增加至临界值, FPUT现象的稳定性增至最强; 当扰动振幅大于该临界值, FPUT现象的稳定性开始逐渐减弱. 2) 当扰动频率位于传统调制不稳定性区域时, 随着扰动信号与泵浦光之间相位差从0增加至π/2, FPUT现象的稳定性先减弱, 当相位差增加至某临界值, FPUT现象的稳定性减至最弱, 当相位差大于临界值, FPUT现象的稳定性又出现逐步增强的规律. 当扰动频率位于非传统调制不稳定性区域时, 与传统情况不同, FPUT现象的稳定性随扰动信号与泵浦光之间的相位差的增加而增强. 以上结果表明, 在FPUT现象的实验中, 为观察到更稳定的FPUT现象, 扰动振幅的值不能太小, 且扰动信号与泵浦光之间相位差也要适宜.
    Stability plays a significant role in successfully observing Fermi-Pasta-Ulam-Tsingou (FPUT) phenomenon in experiment. However, there are few relevant studies in the literature. The primary object of this work is to study the stability of FPUT phenomenon in the nonlinear fibers numerically. In this study, we take the sinusoidally perturbed continuous waves (CWs) with white noise as the imposed initial condition, which can be readily realized in real experiments. We find that both the perturbation amplitude and phase difference between the perturbation and pump can drastically affect the stability of the resulting FPUT phenomenon. Firstly, as the perturbation amplitude increases, the FPUT phenomenon becomes much more stable. When the perturbation amplitude reaches a critical value, the most stable FPUT phenomenon can be observed. With the further increase of the perturbation amplitude, the stability of the resulting FPUT phenomenon weakens. Secondly, the phase difference between the perturbation and pump takes distinct effects on the stability of FPUT phenomenon for perturbation frequency located inside and outside the conventional modulation instability (MI) band. For the perturbation frequency located inside the conventional MI band, as the phase difference between the perturbation and pump increases from zero, the corresponding FPUT phenomenon first is less stable, and then becomes most instable at a critical phase difference; after that, the stability of the FPUT phenomenon is enhanced again. For the perturbation frequency located outside the conventional MI band, the stability of FPUT phenomenon is enhanced monotonically as the phase difference increases from 0 to π/2.In order to observe a much more stable FPUT phenomenon, as shown in the above results, the perturbation amplitude should be moderately large, and the phase difference between the perturbation and the pump should be appropriate to avoid the most instable FPUT phenomenon.
      通信作者: 胡智, 202392490051@nuist.edu.cn ; 李金花, lijinhua@nuist.edu.cn
      Corresponding author: Hu Zhi, 202392490051@nuist.edu.cn ; Li Jin-Hua, lijinhua@nuist.edu.cn
    [1]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Studies of the Nonlinear Problems Los Alamos, May 1, 1955 pLA-1940

    [2]

    Van Simaeys G, Emplit G, Haelterman M 2001 Phys. Rev. Lett. 87 033902Google Scholar

    [3]

    Akhmediev N N 2001 Nature 413 267Google Scholar

    [4]

    Devine N, Ankiewicz A, Genty G, Dudley J M, Akhmediev N 2011 Phys. Lett. A 375 4158Google Scholar

    [5]

    Wabnitz S, Wetzel B 2014 Phys. Lett. A 378 2750Google Scholar

    [6]

    Chin S A, Ashour O A, Blic M R 2015 Phys. Rev. E 92 063202Google Scholar

    [7]

    Bao C, Jaramillo-Villegas J A, Xuan Y, Leaird D E, Qi M, Weiner A M 2016 Phys. Rev. Lett. 117 163901Google Scholar

    [8]

    Kimmoun O, Hsu H C, Branger H, Li M S, Chen Y Y, Kharif C, Onorato M, Kelleher E J R, Kibler B, Akhmediev N, Chabchoub A 2016 Sci. Rep. 6 28516Google Scholar

    [9]

    Deng G, Li S, Biondini G, Trillo S 2017 Phys. Rev. E 96 052213Google Scholar

    [10]

    Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A J, Grinevich P G, Santini P M, Conti C, DelRe E 2018 Phys. Rev. X 8 041017Google Scholar

    [11]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 763Google Scholar

    [12]

    Vanderhaegen G, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Droques M, Mussot A 2020 Opt. Express 28 17773Google Scholar

    [13]

    Sheveleva A, Andral U, Kibler B, Colman P, Dudley J M, Finot C 2022 Optica 9 656Google Scholar

    [14]

    Chen S C, Liu C 2022 Physica D 438 133364Google Scholar

    [15]

    Sinthuja N, Rajasekar S, Senthilvelan M 2023 Nonlinear Dyn. 111 16497Google Scholar

    [16]

    Kraych A E, Agafontsev D, Randoux S, Suret P 2019 Phys. Rev. Lett. 123 093902Google Scholar

    [17]

    Chowdury A, Ankiewicz A, Akhmediev N, Chang W 2018 Chaos 28 123116Google Scholar

    [18]

    Copie F, Suret P, Randoux S 2022 Opt. Lett. 47 3560Google Scholar

    [19]

    Kimmoun O, Hsu H C, Kibler B, Chabchoub A 2017 Phys. Rev. E 96 022219Google Scholar

    [20]

    Yin H M, Chow K W 2021 Physica D 428 133033Google Scholar

    [21]

    Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P, Trillo S 2018 Nat. Photonics 12 303Google Scholar

    [22]

    Liu C, Wu Y H, Chen S C, Yao X, Akhmediev N 2021 Phys. Rev. Lett. 127 094102Google Scholar

    [23]

    Yao X K, Liu C, Yang Z Y, Yang W L 2022 Phys. Rev. Res. 4 013246Google Scholar

    [24]

    Conforti M, Mussot A, Kudlinski A, Trillo S, Akhmediev N 2020 Phys. Rev. A 101 023843Google Scholar

    [25]

    Vanderhaegen G, Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Mussot A, Onorato M, Trillo S, Chabchoub A, Akhmediev N 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2019348118Google Scholar

    [26]

    Cheung V Y Y, Yin H M, Li J H, Chow K W 2023 Phys. Lett. A 476 128877Google Scholar

    [27]

    Chen S C, Liu C, Yao X, Zhao L C, Akhmediev N 2021 Phys. Rev. E 104 024215Google Scholar

    [28]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Chin. Phys. Lett. 39 094201Google Scholar

    [29]

    Chen S C, Liu C, Akhmediev N 2023 Phys. Rev. A 107 063507Google Scholar

    [30]

    Hammani K, Wetzel B, Kibler B, Fatome J, Finot C, Millot G, Akhmediev N, Dudley J M 2011 Opt. Lett. 36 2140Google Scholar

    [31]

    Naveau C, Vanderhaegen G, Szriftgiser P, Martinelli G, Droques M, Kudlinski A, Conforti M, Trillo S, Akhmediev N, Mussot A 2021 Front. Phys. 9 637812Google Scholar

    [32]

    Hu X Y, Chen W, Lu Y, Yu Z J, Chen M, Meng Z 2018 IEEE Photon. Technol. Lett. 30 47Google Scholar

    [33]

    Vanderhaegen G, Szriftgiser P, Kudlinski A, Armaroli A, Conforti M, Mussot A, Trillo S 2023 Phys. Rev. A 108 033507Google Scholar

    [34]

    Goossens J W, Hafermann H, Jaouën Y 2019 Sci. Rep. 9 18467Google Scholar

    [35]

    Yin H M, Li J H, Zheng Z, Chiang K S, Chow K W 2024 Chaos 34 013120Google Scholar

  • 图 1  非线性光纤中扰动平面波随传输距离的时空和相应的频谱演化(1%噪声), 参数为Ω = 1.5, φ0 = 0.5π (a), (b) δ = 0.01; (c), (d) δ = 0.1; (e), (f) δ = 0.25

    Fig. 1.  The evolution of perturbed plane waves in nonlinear fibers with the propagation distance in the temporal and spectral domain (1% noise) with Ω = 1.5, φ0 = 0.5π: (a), (b) δ = 0.01; (c), (d) δ = 0.1; (e), (f) δ = 0.25.

    图 2  非线性光纤中扰动平面波随传输距离的时空和相应的频谱演化(1%噪声), 参数为Ω = 2.2, φ0 = 0.5π (a), (b) δ = 0.01; (c), (d) δ = 0.25; (e), (f) δ = 0.5

    Fig. 2.  The evolution of perturbed plane waves in nonlinear fibers with the propagation distance in the temporal and spectral domain (1% noise) with Ω = 2.2, φ0 = 0.5π: (a), (b) δ = 0.01; (c), (d) δ = 0.25; (e), (f) δ = 0.5.

    图 3  临界扰动振幅δcr与扰动频率的依赖关系(1%噪声)

    Fig. 3.  The dependence of the critical perturbation amplitude (δcr) on the perturbation frequency (1% noise).

    图 4  非线性光纤中扰动平面波随传输距离的时空和相应的频谱演化(1%噪声), 参数为Ω = 1.5, δ = 0.1 (a), (b) φ0 = 0.1π; (c), (d) φ0 = 0.3π; (e), (f) φ0 = 0.5π

    Fig. 4.  The evolution of perturbed plane waves with the propagation distance in the temporal and spectral domain (1% noise) with parameters Ω = 1.5, δ = 0.1: (a), (b) φ0 = 0.1π; (c), (d) φ0= 0.3π; (e), (f) φ0 = 0.5π.

    图 5  扰动信号与泵浦光之间的临界相位差与扰动频率的依赖关系(1%噪声)

    Fig. 5.  The dependence of the critical phase difference between the perturbation and the pump on the perturbation frequency (1% noise).

    图 6  非线性光纤中扰动平面波随传输距离的时空和相应的频谱演化(1%噪声), 参数为Ω = 2.2, δ = 0.25  (a), (b) φ0 = 0.1π; (c), (d) φ0 = 0.3π; (e), (f) φ0 = 0.5π

    Fig. 6.  The evolution of perturbed plane waves with the propagation distance in the temporal and spectral domain (1% noise) with parameters Ω = 2.2, δ = 0.25: (a), (b) φ0 = 0.1π; (c), (d) φ0= 0.3π; (e), (f) φ0 = 0.5π.

    图 7  非线性光纤中扰动平面波随传输距离的时空和相应的频谱演化(10%噪声), 参数为Ω = 1.5, φ0 = 0.5π (a), (b) δ = 0.01; (c), (d) δ = 0.1; (e), (f) δ = 0.25

    Fig. 7.  The evolution of perturbed plane waves in nonlinear fibers with the propagation distance in the temporal and spectral domain (10% noise) with Ω = 1.5, φ0 = 0.5π: (a), (b) δ = 0.01; (c), (d) δ = 0.1; (e), (f) δ = 0.25.

  • [1]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Studies of the Nonlinear Problems Los Alamos, May 1, 1955 pLA-1940

    [2]

    Van Simaeys G, Emplit G, Haelterman M 2001 Phys. Rev. Lett. 87 033902Google Scholar

    [3]

    Akhmediev N N 2001 Nature 413 267Google Scholar

    [4]

    Devine N, Ankiewicz A, Genty G, Dudley J M, Akhmediev N 2011 Phys. Lett. A 375 4158Google Scholar

    [5]

    Wabnitz S, Wetzel B 2014 Phys. Lett. A 378 2750Google Scholar

    [6]

    Chin S A, Ashour O A, Blic M R 2015 Phys. Rev. E 92 063202Google Scholar

    [7]

    Bao C, Jaramillo-Villegas J A, Xuan Y, Leaird D E, Qi M, Weiner A M 2016 Phys. Rev. Lett. 117 163901Google Scholar

    [8]

    Kimmoun O, Hsu H C, Branger H, Li M S, Chen Y Y, Kharif C, Onorato M, Kelleher E J R, Kibler B, Akhmediev N, Chabchoub A 2016 Sci. Rep. 6 28516Google Scholar

    [9]

    Deng G, Li S, Biondini G, Trillo S 2017 Phys. Rev. E 96 052213Google Scholar

    [10]

    Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A J, Grinevich P G, Santini P M, Conti C, DelRe E 2018 Phys. Rev. X 8 041017Google Scholar

    [11]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 763Google Scholar

    [12]

    Vanderhaegen G, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Droques M, Mussot A 2020 Opt. Express 28 17773Google Scholar

    [13]

    Sheveleva A, Andral U, Kibler B, Colman P, Dudley J M, Finot C 2022 Optica 9 656Google Scholar

    [14]

    Chen S C, Liu C 2022 Physica D 438 133364Google Scholar

    [15]

    Sinthuja N, Rajasekar S, Senthilvelan M 2023 Nonlinear Dyn. 111 16497Google Scholar

    [16]

    Kraych A E, Agafontsev D, Randoux S, Suret P 2019 Phys. Rev. Lett. 123 093902Google Scholar

    [17]

    Chowdury A, Ankiewicz A, Akhmediev N, Chang W 2018 Chaos 28 123116Google Scholar

    [18]

    Copie F, Suret P, Randoux S 2022 Opt. Lett. 47 3560Google Scholar

    [19]

    Kimmoun O, Hsu H C, Kibler B, Chabchoub A 2017 Phys. Rev. E 96 022219Google Scholar

    [20]

    Yin H M, Chow K W 2021 Physica D 428 133033Google Scholar

    [21]

    Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P, Trillo S 2018 Nat. Photonics 12 303Google Scholar

    [22]

    Liu C, Wu Y H, Chen S C, Yao X, Akhmediev N 2021 Phys. Rev. Lett. 127 094102Google Scholar

    [23]

    Yao X K, Liu C, Yang Z Y, Yang W L 2022 Phys. Rev. Res. 4 013246Google Scholar

    [24]

    Conforti M, Mussot A, Kudlinski A, Trillo S, Akhmediev N 2020 Phys. Rev. A 101 023843Google Scholar

    [25]

    Vanderhaegen G, Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Mussot A, Onorato M, Trillo S, Chabchoub A, Akhmediev N 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2019348118Google Scholar

    [26]

    Cheung V Y Y, Yin H M, Li J H, Chow K W 2023 Phys. Lett. A 476 128877Google Scholar

    [27]

    Chen S C, Liu C, Yao X, Zhao L C, Akhmediev N 2021 Phys. Rev. E 104 024215Google Scholar

    [28]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Chin. Phys. Lett. 39 094201Google Scholar

    [29]

    Chen S C, Liu C, Akhmediev N 2023 Phys. Rev. A 107 063507Google Scholar

    [30]

    Hammani K, Wetzel B, Kibler B, Fatome J, Finot C, Millot G, Akhmediev N, Dudley J M 2011 Opt. Lett. 36 2140Google Scholar

    [31]

    Naveau C, Vanderhaegen G, Szriftgiser P, Martinelli G, Droques M, Kudlinski A, Conforti M, Trillo S, Akhmediev N, Mussot A 2021 Front. Phys. 9 637812Google Scholar

    [32]

    Hu X Y, Chen W, Lu Y, Yu Z J, Chen M, Meng Z 2018 IEEE Photon. Technol. Lett. 30 47Google Scholar

    [33]

    Vanderhaegen G, Szriftgiser P, Kudlinski A, Armaroli A, Conforti M, Mussot A, Trillo S 2023 Phys. Rev. A 108 033507Google Scholar

    [34]

    Goossens J W, Hafermann H, Jaouën Y 2019 Sci. Rep. 9 18467Google Scholar

    [35]

    Yin H M, Li J H, Zheng Z, Chiang K S, Chow K W 2024 Chaos 34 013120Google Scholar

  • [1] 郑州, 李金花, 马佑桥, 任海东. 扰动振幅和扰动频率对Fermi-Pasta-Ulam-Tsingou回归现象的影响. 物理学报, 2022, 71(18): 185201. doi: 10.7498/aps.71.20220945
    [2] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [3] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应. 物理学报, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [4] 裴世鑫, 徐辉, 孙婷婷, 李金花. 正三角型三芯光纤中等腰对称平面波的调制不稳定性分析. 物理学报, 2018, 67(5): 054203. doi: 10.7498/aps.67.20171650
    [5] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [6] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [7] 张月, 卓青青, 刘红侠, 马晓华, 郝跃. 功率MOSFET的负偏置温度不稳定性效应中的平衡现象. 物理学报, 2013, 62(16): 167305. doi: 10.7498/aps.62.167305
    [8] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [9] 贾维国, 周严勇, 韩永明, 包红梅, 扬盛际. 光子晶体光纤耦合器中的标量调制不稳定性. 物理学报, 2009, 58(9): 6323-6329. doi: 10.7498/aps.58.6323
    [10] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [11] 丁万山, 席 崚, 柳莲花. 基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究. 物理学报, 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [12] 戴小玉, 文双春, 项元江. 色散磁导率对异向介质中的调制不稳定性的影响. 物理学报, 2008, 57(1): 186-193. doi: 10.7498/aps.57.186
    [13] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [14] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性. 物理学报, 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [15] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 保偏光纤中相近频率传输区域的调制不稳定性. 物理学报, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [16] 吴 昆, 吴 健, 徐 晗, 曾和平. 超短激光脉冲调制上转换放大. 物理学报, 2005, 54(8): 3749-3756. doi: 10.7498/aps.54.3749
    [17] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [18] 赵阳, 杨祥林. 非线性单模光纤中的调制不稳定性. 物理学报, 1989, 38(4): 541-547. doi: 10.7498/aps.38.541
    [19] 贺贤士. 等离子体中调制不稳定性和波包的坍缩过程. 物理学报, 1983, 32(5): 627-639. doi: 10.7498/aps.32.627
    [20] 夏蒙棼, 周如玲. 逃逸电子不稳定性. 物理学报, 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
计量
  • 文章访问数:  206
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-30
  • 修回日期:  2024-10-18
  • 上网日期:  2024-10-23

/

返回文章
返回