-
超快强场相干调控分子解离在原子与分子物理、物理化学、量子调控等多个领域引起了重要关注, 在现象理解、机理探究和调控方案等多个方面仍然存在许多值得深入研究的问题. 近期研究表明, 在保持光谱振幅分布不变的条件下, 对最初处于基电子态纯本征态的分子, 通过调制单个超快强紫外激光脉冲的光谱相位分布, 可以有效调控总解离几率和分支比. 本文将采用含时量子波包方法, 进一步探讨光谱相位调控氯溴甲烷(CH2BrCl)分子的光解离反应, 着重探究初始振动态对解离反应的影响. 为了凸显超快强场脉冲调控解离机理与弱场的不同, 本文展示了在弱场极限下, 改变单个超快脉冲的谱相位不会影响总解离几率和分支比;然而在强场极限下, 总解离几率和分支比对单个超快脉冲的谱相位有明显依赖性. 通过分析基电子态振动态布居分布, 发现啁啾脉冲可以有效调控强场极限下诱导的共振拉曼散射(resonance Raman scattering, RRS)现象, 从而导致解离几率和分支比对初始振动态的选择性. 研究结果进一步表明, 通过选择合适的初始振动态并调控啁啾率的值和符号, 可以实现Cl+CH2Br键的优先断裂. 该研究为理解超快光场相干控制多原子分子光解反应提供了新的视角.Coherent control of molecular dissociation in ultrafast strong fields has received considerable attention in various scientific disciplines, such as atomic and molecular physics, physical chemistry, and quantum control. Many fundamental issues still exist regarding the understanding of phenomena, exploration of mechanisms, and development of control strategies. Recent progress has shown that manipulating the spectral phase distribution of a single ultrafast strong ultraviolet laser pulse while maintaining the the same spectral amplitude distribution can effectively control the total dissociation probability and branching ratios of molecules initially in the ground state. In this work, the spectral phase control of the photodissociation reaction of chlorobromomethane (CH2BrCl) is studied in depth by using a time-dependent quantum wave packet method, focusing on the influence of the initial vibrational state on the dissociation reaction. The results show that modifying the spectral phase of a single ultrafast pulse does not influence the total dissociation probability or branching ratio in the weak field limit. However, these factors exhibit significant dependence on the phase of the single ultrafast pulse spectrum under the strong field limit. By analyzing the population distribution of vibrational states in the ground electronic state, we observe that chirped pulses can effectively regulate the resonance Raman scattering (RRS) phenomenon induced in strong fields, thereby selectively affecting the dissociation probability and branching ratio based on initial vibrational states. Furthermore, we demonstrate that by selecting an appropriate initial vibration state and controlling both the value and sign of the chirp rate, it is possible to achieve preferential cleavage of Cl+CH2Br bonds. This study provides new insights into understanding of ultrafast coherent control of photodissociation reactions in polyatomic molecules.
-
Keywords:
- photodissociation /
- coherent control /
- initial vibrational states /
- resonance Raman scattering
-
图 1 $ \rm {CH_{2}BrCl} $光解离激光控制示意图 (a) 基电子态$ \text{S}_0(\text{a}^{1}\text{A}') $, 激发态$ \text{S}_1(\text{a}^{1}\text{A}') $和$ \text{S}_2(\text{a}^{1}\text{A}') $的光解离动力学模型. (b) 不同初始振动态$ |\nu'\nu''\rangle $沿着Br-CH2反应坐标描绘的光解离通道. (c) 不同初始振动态$ |\nu'\nu''\rangle $沿Cl-CH2反应坐标的光解离通道. 其中黑色线、红色线和蓝色线分别表示基电子态$ \text{S}_0(V_0^\text{ad}) $、第一激发电子态$ \text{S}_1(V_1^\text{ad}) $和第二激发电子态$ \text{S}_2(V_2^\text{ad}) $的绝热势能曲线, 红色虚线和黑色虚线分别表示非绝热势能曲线$ V_1^{di} $和$ V_2^{di} $
Fig. 1. Schematic illustration of laser control in the photodissociation process of $ \rm {CH_{2}BrCl} $. (a) The model showcases the photodissociation dynamics involving the ground electronic state $ \text{S}_0(\text{a}^{1}\text{A}') $, as well as the excited adiabatic electronic states $ \text{S}_1(\text{b}^{1}\text{A}') $ and $ \text{S}_2(\text{c}^{1}\text{A}') $. (b) depict the photodissociation channel along the Br-CH2 reaction coordinate for different initial vibrational states $ |\nu'\nu''\rangle $, while (c) illustrate the channel along the Cl-CH2 reaction coordinate for the same initial states $ |\nu'\nu''\rangle $. Where the black, red, and blue lines represent the adiabatic potential energy curves of ground electronic state $ \text{S}_0(V_0^\text{ad}) $, the first excited electronic state excited state $ \text{S}_1(V_1^\text{ad}) $, and the second excited electronic state $ \text{S}_2(V_2^\text{ad}) $, respectively, with the red dashed line representing $ (V_1^{di}) $ and the black dashed line representing $ (V_2^\text{ad}) $.
图 2 CH2BrCl分子初始振动态为$ |00\rangle $、$ |10\rangle $和$ |20\rangle $时 (a)—(c) 基电子态的二维振动本征函数密度分布; (d)—(f) 弱场极限下Br+CH2Cl通道和Cl+CH2Br通道的含时解离几率(分别用$ P^{\mathrm{Br}} $和$ P^{\mathrm{Cl}} $标记), (g)—(i)相应的含时分支比R; (j)—(l) 强场极限下Br+CH2Cl和Cl+CH2Br两个通道的含时解离几率, (m)—(o)相应的含时解离分支比
Fig. 2. For the initial vibrational states are $ |00\rangle $, $ |01\rangle $ and $ |02\rangle $, (a)–(c) Two-dimensional vibrational eigenfunction density distributions; (d)–(f) the dissociation probability plotted as a function of time of Br+CH2Cl and Cl+CH2Br channels in the weak-field limit (marked with $ P^{\mathrm{Br}} $ and $ P^{\mathrm{Cl}} $, respectively), Corresponding time-dependent dissociation branching ratios R are shown (g)–(i); (j)–(l) and (m)–(o) as well as in the strong-field limit.
图 3 CH2BrCl分子初始振动态为$ |01\rangle $、$ |02\rangle $和$ |11\rangle $时 (a)—(c) 基电子态的二维振动本征函数密度分布; (d)—(f) 弱场极限下Br+CH2Cl通道和Cl+CH2Br通道的含时解离几率(分别用$ P^{\mathrm{Br}} $和$ P^{\mathrm{Cl}} $标记), (g)—(i)相应的含时分支比R; (j)—(l) 强场极限下Br+CH2Cl和Cl+CH2Br两个通道的含时解离几率, (m)—(o)相应的含时解离分支比
Fig. 3. For the initial vibrational states are $ |00\rangle $, $ |01\rangle $ and $ |02\rangle $, (a)–(c) Two-dimensional vibrational eigenfunction density distributions; (d)–(f) the dissociation probability plotted as a function of time of Br+CH2Cl and Cl+CH2Br channels in the weak-field limit (marked with $ P^{\mathrm{Br}} $ and $ P^{\mathrm{Cl}} $, respectively), Corresponding time-dependent dissociation branching ratios R are shown (g)–(i); (j)–(l) and (m)–(o) as well as in the strong-field limit.
图 6 (a) $ |00\rangle $、(b) $ |10\rangle $、(c) $ |20\rangle $、(d) $ |01\rangle $、(e) $ |02\rangle $、(f) $ |11\rangle $分别作为初始振动态时, 基电子态其余振动态末态布居之和$ P(t_f) $随啁啾率$ \beta_{0} $的变化行为. 对于所有不同的初始振动态, $ P(t_f) $的最大值都出现在$ \beta_0=0 $附近
Fig. 6. (a)-(f) The sum of the remaining vibrational states populations $ P(t_f) $ of the ground electronic state for the initial vibrational state (a) $ |00\rangle $, (b) $ |10\rangle $, (c) $ |20\rangle $, (d) $ |01\rangle $, (e) $ |02\rangle $ and (f) $ |11\rangle $ as a function of $ \beta_0 $, respectively. The maximum of $ P(t_f) $ appears near $ \beta_0=0 $ for all different initial vibrational states.
图 7 随着啁啾率$ \beta_{0} $的改变, (a) $ |00\rangle $、(b) $ |10\rangle $、(c) $ |20\rangle $、(d) $ |01\rangle $、(e) $ |02\rangle $、(f) $ |11\rangle $分别作为初始振动态时, 基电子态不同振动态$ |\nu'\nu''\rangle $的末态布居分布
Fig. 7. The final population distributions of different vibrational states $ |\nu'\nu''\rangle $ for the different initial vibrational state (a) $ |00\rangle $, (b) $ |10\rangle $, (c) $ |20\rangle $, (d) $ |01\rangle $, (e) $ |02\rangle $ and (f) $ |11\rangle $, varying with the chirp rate $ \beta_0 $.
图 8 强场极限下啁啾脉冲诱导的基电子态振动态共振拉曼散射现象. 初始振动态为$ |00\rangle $、$ |10\rangle $和$ |20\rangle $时, (a)—(i)啁啾率$ \beta_0=0 $, $ \pm30 $ fs2时的初态含时布居$ P_{\nu'\nu''} $、基电子态其余振动态布居之和$ P(t) $、两个激发电子态的含时布居$ P_{1} $和$ P_{2} $
Fig. 8. Resonance Raman scattering to the vibrational states of the ground electronic state induced by a strong chirped pulse in the strong-field limit. For the initial vibrational states are $ |00\rangle $, $ |10\rangle $ and $ |20\rangle $, (a)–(i) The time-dependent populations of the initial state $ P_{\nu'\nu''} $, the total of the remaining vibrational states of the ground electronic state $ P(t) $, and two excited electronic states $ P_{1} $ and $ P_{2} $ for three different chirp rates $ \beta_0=0 $, $ \pm30 $ fs2.
图 9 强场极限下啁啾脉冲诱导的基电子态振动态共振拉曼散射现象. 初始振动态为$ |01\rangle $、$ |02\rangle $和$ |11\rangle $时, (a)—(i)啁啾率$ \beta_0=0 $, $ \pm30 $ fs2时的初态含时布居$ P_{\nu'\nu''} $、基电子态其余振动态布居之和$ P(t) $、两个激发电子态的含时布居$ P_{1} $和$ P_{2} $
Fig. 9. Resonance Raman scattering to the vibrational states of the ground electronic state induced by a strong chirped pulse in the strong-field limit. For the initial vibrational states are $ |01\rangle $, $ |02\rangle $ and $ |11\rangle $, (a)–(i) The time-dependent populations of the initial state $ P_{\nu'\nu''} $, the total of the remaining vibrational states of the ground electronic state $ P(t) $, and two excited electronic states $ P_{1} $ and $ P_{2} $ for three different chirp rates $ \beta_0=0 $, $ \pm30 $ fs2.
-
[1] Mokhtari A, Cong P, Herek J, Zewail A 1990 Nature 348 225Google Scholar
[2] Brumer P, Shapiro M 1992 Annu. Rev. Phys. Chem. 43 257Google Scholar
[3] King W E, Campbell G H, Frank A, Reed B, Schmerge J F, Siwick B J, Stuart B C, Weber P M 2005 J. Appl. Phys. 97 111101Google Scholar
[4] Sun Z, Wang C, Zhao W, Yang C 2018 J. Chem. Phys. 149 224307Google Scholar
[5] Yang J, Zhu X, Wolf T J, Li Z, Nunes J P F, Coffee R, Cryan J P, Gühr M, Hegazy K, Heinz T F, Jobe K, Li R, Shen X, Veccione T, Weathersby S, Wilkin K J, Yoneda C, Zheng Q, Martinez T J, Centurion M, Wang X 2018 Science 361 64Google Scholar
[6] Sun Z, Liu Y 2023 Phys. Chem. Chem. Phys. 25 17397Google Scholar
[7] Rubio-Lago L, Chicharro D V, Poullain S M, Zanchet A, Koumarianou G, Glodic P, Samartzis P C, García-Vela A, Bañares L 2023 Phys. Chem. Chem. Phys. 25 11684Google Scholar
[8] Kranabetter L, Kristensen H H, Ghazaryan A, Schouder C A, Chatterley A S, Janssen P, Jensen F, Zillich R E, Lemeshko M, Stapelfeldt H 2023 Phys. Rev. Lett. 131 053201Google Scholar
[9] Lian Z, Hu Z, Qi H, Fei D, Luo S, Chen Z, Shu C C 2021 Phys. Rev. A 104 053105Google Scholar
[10] Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110 023116Google Scholar
[11] Zhang H, Lavorel B, Billard F, Hartmann J M, Hertz E, Faucher O, Ma J, Wu J, Gershnabel E, Prior Y, Averbukh I S 2019 Phys. Rev. Lett. 122 193401Google Scholar
[12] Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104 013108Google Scholar
[13] Shu C C, Henriksen N E 2013 Phys. Rev. A 87 013408Google Scholar
[14] Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763Google Scholar
[15] Zhang W, Gong X, Li H, Lu P, Sun F, Ji Q, Lin K, Ma J, Li H, Qiang J, He F, Wu J 2019 Nat. Commun. 10 757Google Scholar
[16] Lu P, Wang J, Li H, Lin K, Gong X, Song Q, Ji Q, Zhang W, Ma J, Li H, Zeng H, He F, Wu J 2018 Proc. Nati. Acad. Sci. 115 2049Google Scholar
[17] Guo Z, Fang Y, Ge P, Yu X, Wang J, Han M, Gong Q, Liu Y 2021 Phys. Rev. A 104 L051101Google Scholar
[18] Yu X, Zhang X, Hu X, Zhao X, Ren D, Li X, Ma P, Wang C, Wu Y, Luo S, Ding D 2022 Phys. Rev. Lett. 129 023001Google Scholar
[19] Sansone G, Kelkensberg F, Pérez-Torres J, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario L J, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov Y M, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763Google Scholar
[20] Kang H, Quan W, Wang Y, Lin Z, Wu M, Liu H, Liu X, Wang B B, Liu H J, Gu Y Q, Jia X Y, Liu J, Chen J, Cheng Y 2010 Phys. Rev. Lett. 104 203001Google Scholar
[21] 罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军 2019 光学学报 39 0126007Google Scholar
Luo S, Chen Z, Li X, Hu Z, Ding D 2019 Acta Opt. Sin. 39 0126007Google Scholar
[22] Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114Google Scholar
[23] Zhang W, Yu Z, Gong X, Wang J, Lu P, Li H, Song Q, Ji Q, Lin K, Ma J, Li H, Sun F, Qiang J, Zeng H, He F, Wu J 2017 Phys. Rev. Lett. 119 253202Google Scholar
[24] Guo Z, Zhang Z, Deng Y, Wang J, Ye D, Liu J, Liu Y 2024 Phys. Rev. Lett. 132 143201Google Scholar
[25] McFarland B K, Farrell J P, Bucksbaum P H, Guhr M 2008 Science 322 1232Google Scholar
[26] Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902Google Scholar
[27] Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, Zhao Z 2015 Phys. Rev. Lett. 115 123002Google Scholar
[28] Yang W, Sheng Z, Feng X, Wu M, Chen Z, Song X 2014 Opt. Express 22 2519Google Scholar
[29] He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar
[30] Xie W, Yan J, Li M, Cao C, Guo K, Zhou Y, Lu P 2021 Phys. Rev. Lett. 127 263202Google Scholar
[31] Zewail A H 2000 J. Phys. Chem. A 104 5660Google Scholar
[32] Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79Google Scholar
[33] Shu C C, Yuan K J, Dong D, Petersen I R, Bandrauk A D 2017 J. Phys. Chem. Lett. 8 1Google Scholar
[34] Yang D, Cong S L 2011 Phys. Rev. A 84 013424Google Scholar
[35] Jia Y W, Yuen C, Jing W Q, Zhou Z Y, Lin C, Zhao S F 2024 Phys. Rev. A 110 023112Google Scholar
[36] Shapiro M, Brumer P 2001 J. Phys. Chem. A 105 2897
[37] Csehi A, Halász G J, Cederbaum L S, Vibók Á 2015 J. Chem. Phys. 143 014305Google Scholar
[38] Liebel M, Kukura P 2017 Nat. Chem. 9 45Google Scholar
[39] Wilma K, Shu C C, Scherf U, Hildner R 2018 J. Am. Chem. Soc. 140 15329Google Scholar
[40] Morichika I, Murata K, Sakurai A, Ishii K, Ashihara S 2019 Nat. Commun. 10 3893Google Scholar
[41] Csehi A, Halász G J, Cederbaum L S, Vibók Á 2016 J. Chem. Phys. 144 074309Google Scholar
[42] Tiwari A K, Henriksen N E 2016 J. Chem. Phys. 144 014306Google Scholar
[43] Sun Z, Wang C, Zhao W, Zheng Y, Yang C 2018 Phys. Chem. Chem. Phys. 20 20957Google Scholar
[44] Spanner M, Arango C A, Brumer P 2010 J. Chem. Phys. 133 151101Google Scholar
[45] Weigel A, Sebesta A, Kukura P 2015 J. Phys. Chem. Lett. 6 4032Google Scholar
[46] Brumer P, Shapiro M 1986 Chem. Phys. Lett. 126 541Google Scholar
[47] Shapiro M, Brumer P 2003 Principles of the quantum control of molecular processes (Wiley, New York
[48] Garcia-Vela A, Henriksen N E 2015 J. Phys. Chem. Lett. 6 824Google Scholar
[49] García-Vela A 2016 Phys. Chem. Chem. Phys. 18 10346Google Scholar
[50] Serrano-Jiménez A, Bañares L, García-Vela A 2019 Phys. Chem. Chem. Phys. 21 7885Google Scholar
[51] Dey D, Henriksen N E 2020 J. Phys. Chem. Lett. 11 8470Google Scholar
[52] Shu C C, Henriksen N E 2011 J. Chem. Phys. 134 164308Google Scholar
[53] Tiwari A K, Dey D, Henriksen N E 2014 Phys. Rev. A 89 023417Google Scholar
[54] Liu Y, Meng J Q, Sun Z, Shu C C 2024 J. Phys. Chem. Lett. 15 8393Google Scholar
[55] García-Vela A 2018 Phys. Rev. Lett. 121 153204Google Scholar
[56] Abrashkevich D G, Shapiro M, Brumer P 2002 J. Chem. Phys. 116 5584Google Scholar
[57] Nichols S R, Weinacht T C, Rozgonyi T, Pearson B J 2009 Phys. Rev. A 79 043407Google Scholar
[58] Luo S, Zhou S, Hu W, Li X, Ma P, Yu J, Zhu R, Wang C, Liu F, Yan B, Liu A, Yang Y, Guo F, Dajun D 2017 Phys. Rev. A 96 063415Google Scholar
[59] Esposito V J, Liu T, Wang G, Caracciolo A, Vansco M F, Marchetti B, Karsili T N, Lester M I 2021 J. Phys. Chem. A 125 6571Google Scholar
[60] Jing W Q, Sun Z P, Zhao S F, Shu C C 2023 J. Phys. Chem. Lett. 14 11305Google Scholar
[61] Sarma M, Adhikari S, Mishra M K 2008 J. Phys. Chem. A 112 13302Google Scholar
[62] Geißler D, Marquetand P, González-Vázquez J, González L, Rozgonyi T, Weinacht T 2012 J. Phys. Chem. A 116 11434Google Scholar
[63] Corrales M E, de Nalda R, Bañares L 2017 Nat. Commun. 8 1345Google Scholar
[64] Bouallagui A, Zanchet A, Bañares L, García-Vela A 2023 Phys. Chem. Chem. Phys. 25 20365Google Scholar
[65] Rozgonyi T, González L 2008 J. Phys. Chem. A 112 5573Google Scholar
[66] Shu C C, Rozgonyi T, González L, Henriksen N E 2012 J. Chem. Phys. 136 174303Google Scholar
[67] Chicharro D, Marggi Poullain S, González-Vázquez J, Bañares L 2017 J. Chem. Phys. 147 013945Google Scholar
[68] Muthiah B, Kasai T, Lin K C 2021 Phys. Chem. Chem. Phys. 23 6098Google Scholar
[69] Lanczos C 1950 J. Res. Natl. Bur. Stand 45 255Google Scholar
[70] Park T J, Light J 1986 J. Chem. Phys. 85 5870Google Scholar
[71] Sun Z, Yang C, Zheng Y 2015 J. Chem. Phys. 143 224309Google Scholar
[72] Kosloff R 1988 J. Phys. Chem. 92 2087Google Scholar
[73] Simpson J R, Roslyak O, Duque J G, Hároz E H, Crochet J J, Telg H, Piryatinski A, Walker A R H, Doorn S K 2018 Nat. Commun. 9 637Google Scholar
[74] Guo Y, Shu C C, Dong D, Nori F 2019 Phys. Rev. Lett. 123 223202Google Scholar
[75] Shapiro M, Brumer P 2012 Quantum control of molecular processes (John Wiley & Sons: New York
计量
- 文章访问数: 83
- PDF下载量: 5
- 被引次数: 0