-
微波等离子体推力器(microwave plasma thruster, MPT)属于电热型推力器, 其圆柱腔内等离子体过程、微波场分布与TM011模谐振状态是影响性能的重要因素. 针对前人研究的可连续调节谐振状态的千瓦级MPT, 需要开展结构固定的MPT研究, 使其调谐过程简单、谐振状态良好, 为深入研究奠定基础. 本文对结构固定的千瓦级MPT圆柱腔内等离子体过程进行分析, 探寻最佳放电条件. 计算腔体内TM011模谐振状态下的微波电场和功率密度分布, 分析其影响因素. 对圆柱腔进行精细调谐实验, 研究圆柱腔尺度和微波耦合探针尺度对谐振状态的影响. 理论分析和数值计算结果发现489 Pa压强条件下氦气放电消耗功率最低, 长径比大于1的圆柱腔内电场分布规律有利于气体放电. 调谐实验结果发现长度和半径适中的球形探针使最短圆柱腔TM011谐振状态最佳、谐振频率最接近工作频率2.45 GHz. 实验证明该腔体及匹配的探针使微波功率利用率高、氦气易放电, 其结构方案具有正确性和可靠性.
-
关键词:
- 微波等离子体推力器 /
- 气体放电与等离子体产生 /
- 微波技术
Microwave plasma thruster (MPT) is a kind of electrothermal thruster. Inside its cylindrical cavity, the plasma process, microwave electric field distribution, and TM011 mode resonant state are important factors affecting the performance of MPT seriously. According to previous MPT formed through continuous regulation in the resonant sate of cylindrical cavity, the research is needed on a newly fixed and simple MPT, which will simplify the resonant state regulation and lays an important foundation for further study. Therefore the plasma process is analyzed to find the optimal gas discharge condition, and the microwave electric field intensity and power density distribution inside the cavity running in TM011 resonant sate are calculated to analyse how the parameters are influenced by the cavity dimensions. The resonant state is finely regulated to study how it is influenced by the dimensions of cylindrical cavity and microwave coupling probe with ball and half ball structure. The results of theoretical analysis and calculation show that the discharge power of helium gas is the lowest under the condition of 489 Pa and when the ratio of length to diameter is greater than 1, the microwave electric density distribution inside the cavity is beneficial. Owing to the appropriate length and radius of microwave coupling ball probe, the experiment on resonant state regulation shows that the shortest cylinder cavity is in the optimal resonant sate, with a resonance frequency very close to 2.45 GHz. The helium discharge experiment proves that the cavity and matching ball probe enable high microwave utilization and easy helium gas discharge, and the structure scheme is correct and reliable.[1] 毛根旺, 何洪庆, 杨涓, 史韶莉 2012 推进技术 19 21
Mao G W, He H Q, Yang J, Shi S L 2012 J. Propul. Technol. 19 21
[2] 杭观荣, 李诗凝, 康小录, 金逸舟, 孙雯熙 2023 推进技术 44 38Google Scholar
Hang G R, Li S N, Kang X L, Jin Y Z, Sun W X 2023 J. Propul. Technol. 44 38Google Scholar
[3] Herlin M A, Brown S C 1948 Phys. Rev. B 74 1650Google Scholar
[4] Brown S C, MacDonald A D 1949 Phys. Rev. B 76 1629Google Scholar
[5] Whitehair S, Asmussen J, Nakanishi S 1987 J. Propuls. Power 3 136Google Scholar
[6] Sullivan D, Micci M 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 p3127
[7] Yildiz M S, Celik M 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, July 27–29, 2015 p3926
[8] Mehmet S Y, Murat C 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, FL, July 27–29, 2015
[9] Ivanov S, Kolev S, Kiss’ovski Z 2021 Contrib. Plasm. Phys. 61 e202100017Google Scholar
[10] Tsubasa O, Suk H, Hideaki O 2023 AIAA SciTech Forum and Exposition, National Harbor, MD, Februray 10, 2003
[11] 韩先伟, 毛根旺, 何洪庆 2002 固体火箭技术 25 21
Han X W, Mao G W, He H Q 2002 Sol. Roc. Technol. 25 21
[12] 韩先伟, 何洪庆, 唐金兰, 毛根旺 2002 上海航天 19 1Google Scholar
Han X W, He H Q, Tang J L, Mao G W 2002 Aerospace Shanghai 19 1Google Scholar
[13] 唐金兰, 何洪庆, 毛根旺, 万伟 2002 固体火箭技术 25 31
Tang J L, He H Q, Mao G W, Wan W 2002 Solis Rocket Tech. 25 31
[14] Yang J, He H Q, Mao G W, Han X W 2004 J. Spacecraft Rockets 41 126Google Scholar
[15] 杨涓, 毛根旺, 何洪庆, 唐金兰, 宋军, 苏纬仪 2004 物理学报 53 4282Google Scholar
Yang J, Mao G W, He H Q, Tang J L, Song J, Su W Y 2004 Acta Phys. Sin. 53 4282Google Scholar
[16] 杨涓, 苏纬仪, 毛根旺, 夏广庆 2006 物理学报 55 6494Google Scholar
Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494Google Scholar
[17] Yang J, Xu Y Q, Tang J L, Mao G W, Yang T L 2008 Rev. Sci. Instrum. 79 083503Google Scholar
[18] Yang J, Xu Y Q, Meng Z Q, Yang T L 2008 Phys. Plasmas 15 023503Google Scholar
[19] 唐金兰, 何洪庆, 韩先伟, 毛根旺, 杨涓, 万伟 2002 推进技术 23 303Google Scholar
Tang J L, He H Q, Han X W, Mao G W, Yang J, Wan W 2002 J. Propul. Technol. 23 303Google Scholar
[20] 孙安邦, 毛根旺, 夏广庆, 陈茂林, 邢鹏涛 2012 推进技术 33 138Google Scholar
Sun A B, Mao G W, Xia G Q, Chen M L, Xing P T 2012 J. Propul. Technol. 33 138Google Scholar
[21] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar
Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar
[22] 高海燕, 杨欣达, 周波, 贺青, 韦联福 2022 物理学报 71 064202Google Scholar
Gao H Y, Yang X D, Zhou B, He Q, Wei L F 2022 Acta Phys. Sin. 71 064202Google Scholar
[23] 罗思J R 著 (吴坚强 等 译) 1998 工业等离子体工程·第Ⅰ卷·基本原理 (北京: 科学出版社)
Roth J R (translated by Wu J Q) 1998 Industrial Plasma Engineering·Volume I·Basic Principles (Beijing: Science Press
-
图 12 LP/LF =146 mm/72.25 mm条件下探针结构及尺度对∆Freq和Lm的影响 (a)长4.5 mm、半径4.0—8.0 mm半球形探针; (b)半径3.5 mm、长3.0—6.0 mm球形探针和半径4.0 mm、长6.0—7.5 mm半球形探针
Fig. 12. Influence of structure and dimension of probe on ∆Freq and Lm as LP/LF = 146 mm/72.25 mm: (a) 4.5 mm length and 4.0–8.0 mm radius of half ball; (b) 3.5 mm radius and 3.0–6.0 mm length of ball, 4.0 mm radius and 6.0–7.5 mm length of half ball.
-
[1] 毛根旺, 何洪庆, 杨涓, 史韶莉 2012 推进技术 19 21
Mao G W, He H Q, Yang J, Shi S L 2012 J. Propul. Technol. 19 21
[2] 杭观荣, 李诗凝, 康小录, 金逸舟, 孙雯熙 2023 推进技术 44 38Google Scholar
Hang G R, Li S N, Kang X L, Jin Y Z, Sun W X 2023 J. Propul. Technol. 44 38Google Scholar
[3] Herlin M A, Brown S C 1948 Phys. Rev. B 74 1650Google Scholar
[4] Brown S C, MacDonald A D 1949 Phys. Rev. B 76 1629Google Scholar
[5] Whitehair S, Asmussen J, Nakanishi S 1987 J. Propuls. Power 3 136Google Scholar
[6] Sullivan D, Micci M 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 p3127
[7] Yildiz M S, Celik M 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, July 27–29, 2015 p3926
[8] Mehmet S Y, Murat C 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, FL, July 27–29, 2015
[9] Ivanov S, Kolev S, Kiss’ovski Z 2021 Contrib. Plasm. Phys. 61 e202100017Google Scholar
[10] Tsubasa O, Suk H, Hideaki O 2023 AIAA SciTech Forum and Exposition, National Harbor, MD, Februray 10, 2003
[11] 韩先伟, 毛根旺, 何洪庆 2002 固体火箭技术 25 21
Han X W, Mao G W, He H Q 2002 Sol. Roc. Technol. 25 21
[12] 韩先伟, 何洪庆, 唐金兰, 毛根旺 2002 上海航天 19 1Google Scholar
Han X W, He H Q, Tang J L, Mao G W 2002 Aerospace Shanghai 19 1Google Scholar
[13] 唐金兰, 何洪庆, 毛根旺, 万伟 2002 固体火箭技术 25 31
Tang J L, He H Q, Mao G W, Wan W 2002 Solis Rocket Tech. 25 31
[14] Yang J, He H Q, Mao G W, Han X W 2004 J. Spacecraft Rockets 41 126Google Scholar
[15] 杨涓, 毛根旺, 何洪庆, 唐金兰, 宋军, 苏纬仪 2004 物理学报 53 4282Google Scholar
Yang J, Mao G W, He H Q, Tang J L, Song J, Su W Y 2004 Acta Phys. Sin. 53 4282Google Scholar
[16] 杨涓, 苏纬仪, 毛根旺, 夏广庆 2006 物理学报 55 6494Google Scholar
Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494Google Scholar
[17] Yang J, Xu Y Q, Tang J L, Mao G W, Yang T L 2008 Rev. Sci. Instrum. 79 083503Google Scholar
[18] Yang J, Xu Y Q, Meng Z Q, Yang T L 2008 Phys. Plasmas 15 023503Google Scholar
[19] 唐金兰, 何洪庆, 韩先伟, 毛根旺, 杨涓, 万伟 2002 推进技术 23 303Google Scholar
Tang J L, He H Q, Han X W, Mao G W, Yang J, Wan W 2002 J. Propul. Technol. 23 303Google Scholar
[20] 孙安邦, 毛根旺, 夏广庆, 陈茂林, 邢鹏涛 2012 推进技术 33 138Google Scholar
Sun A B, Mao G W, Xia G Q, Chen M L, Xing P T 2012 J. Propul. Technol. 33 138Google Scholar
[21] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar
Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar
[22] 高海燕, 杨欣达, 周波, 贺青, 韦联福 2022 物理学报 71 064202Google Scholar
Gao H Y, Yang X D, Zhou B, He Q, Wei L F 2022 Acta Phys. Sin. 71 064202Google Scholar
[23] 罗思J R 著 (吴坚强 等 译) 1998 工业等离子体工程·第Ⅰ卷·基本原理 (北京: 科学出版社)
Roth J R (translated by Wu J Q) 1998 Industrial Plasma Engineering·Volume I·Basic Principles (Beijing: Science Press
计量
- 文章访问数: 208
- PDF下载量: 9
- 被引次数: 0