搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TM011 MPT等离子体和电场特征分析与调谐实验

杨涓 孙江宏 王雨轩 罗凌峰 张岩 康小录 贾晴晴

引用本文:
Citation:

TM011 MPT等离子体和电场特征分析与调谐实验

杨涓, 孙江宏, 王雨轩, 罗凌峰, 张岩, 康小录, 贾晴晴
cstr: 32037.14.aps.74.20241118

Analysis on plasma and electric field property of TM011 mode MPT and its tuning experiment

YANG Juan, SUN Jianghong, WANG Yuxuan, LUO Lingfeng, ZHANG Yan, KANG Xiaolu, JIA Qingqing
cstr: 32037.14.aps.74.20241118
PDF
HTML
导出引用
  • 微波等离子体推力器(microwave plasma thruster, MPT)属于电热型推力器, 其圆柱腔内等离子体过程、微波场分布与TM011模谐振状态是影响性能的重要因素. 针对前人研究的可连续调节谐振状态的千瓦级MPT, 需要开展结构固定的MPT研究, 使其调谐过程简单、谐振状态良好, 为深入研究奠定基础. 本文对结构固定的千瓦级MPT圆柱腔内等离子体过程进行分析, 探寻最佳放电条件. 计算腔体内TM011模谐振状态下的微波电场和功率密度分布, 分析其影响因素. 对圆柱腔进行精细调谐实验, 研究圆柱腔尺度和微波耦合探针尺度对谐振状态的影响. 理论分析和数值计算结果发现489 Pa压强条件下氦气放电消耗功率最低, 长径比大于1的圆柱腔内电场分布规律有利于气体放电. 调谐实验结果发现长度和半径适中的球形探针使最短圆柱腔TM011谐振状态最佳、谐振频率最接近工作频率2.45 GHz. 实验证明该腔体及匹配的探针使微波功率利用率高、氦气易放电, 其结构方案具有正确性和可靠性.
    Microwave plasma thruster (MPT) is a kind of electrothermal thruster. Inside its cylindrical cavity, the plasma process, microwave electric field distribution, and TM011 mode resonant state are important factors affecting the performance of MPT seriously. According to previous MPT formed through continuous regulation in the resonant sate of cylindrical cavity, the research is needed on a newly fixed and simple MPT, which will simplify the resonant state regulation and lays an important foundation for further study. Therefore the plasma process is analyzed to find the optimal gas discharge condition, and the microwave electric field intensity and power density distribution inside the cavity running in TM011 resonant sate are calculated to analyse how the parameters are influenced by the cavity dimensions. The resonant state is finely regulated to study how it is influenced by the dimensions of cylindrical cavity and microwave coupling probe with ball and half ball structure. The results of theoretical analysis and calculation show that the discharge power of helium gas is the lowest under the condition of 489 Pa and when the ratio of length to diameter is greater than 1, the microwave electric density distribution inside the cavity is beneficial. Owing to the appropriate length and radius of microwave coupling ball probe, the experiment on resonant state regulation shows that the shortest cylinder cavity is in the optimal resonant sate, with a resonance frequency very close to 2.45 GHz. The helium discharge experiment proves that the cavity and matching ball probe enable high microwave utilization and easy helium gas discharge, and the structure scheme is correct and reliable.
      通信作者: 杨涓, yangjuan@nwpu.edu.cn
      Corresponding author: YANG Juan, yangjuan@nwpu.edu.cn
    [1]

    毛根旺, 何洪庆, 杨涓, 史韶莉 2012 推进技术 19 21

    Mao G W, He H Q, Yang J, Shi S L 2012 J. Propul. Technol. 19 21

    [2]

    杭观荣, 李诗凝, 康小录, 金逸舟, 孙雯熙 2023 推进技术 44 38Google Scholar

    Hang G R, Li S N, Kang X L, Jin Y Z, Sun W X 2023 J. Propul. Technol. 44 38Google Scholar

    [3]

    Herlin M A, Brown S C 1948 Phys. Rev. B 74 1650Google Scholar

    [4]

    Brown S C, MacDonald A D 1949 Phys. Rev. B 76 1629Google Scholar

    [5]

    Whitehair S, Asmussen J, Nakanishi S 1987 J. Propuls. Power 3 136Google Scholar

    [6]

    Sullivan D, Micci M 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 p3127

    [7]

    Yildiz M S, Celik M 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, July 27–29, 2015 p3926

    [8]

    Mehmet S Y, Murat C 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, FL, July 27–29, 2015

    [9]

    Ivanov S, Kolev S, Kiss’ovski Z 2021 Contrib. Plasm. Phys. 61 e202100017Google Scholar

    [10]

    Tsubasa O, Suk H, Hideaki O 2023 AIAA SciTech Forum and Exposition, National Harbor, MD, Februray 10, 2003

    [11]

    韩先伟, 毛根旺, 何洪庆 2002 固体火箭技术 25 21

    Han X W, Mao G W, He H Q 2002 Sol. Roc. Technol. 25 21

    [12]

    韩先伟, 何洪庆, 唐金兰, 毛根旺 2002 上海航天 19 1Google Scholar

    Han X W, He H Q, Tang J L, Mao G W 2002 Aerospace Shanghai 19 1Google Scholar

    [13]

    唐金兰, 何洪庆, 毛根旺, 万伟 2002 固体火箭技术 25 31

    Tang J L, He H Q, Mao G W, Wan W 2002 Solis Rocket Tech. 25 31

    [14]

    Yang J, He H Q, Mao G W, Han X W 2004 J. Spacecraft Rockets 41 126Google Scholar

    [15]

    杨涓, 毛根旺, 何洪庆, 唐金兰, 宋军, 苏纬仪 2004 物理学报 53 4282Google Scholar

    Yang J, Mao G W, He H Q, Tang J L, Song J, Su W Y 2004 Acta Phys. Sin. 53 4282Google Scholar

    [16]

    杨涓, 苏纬仪, 毛根旺, 夏广庆 2006 物理学报 55 6494Google Scholar

    Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494Google Scholar

    [17]

    Yang J, Xu Y Q, Tang J L, Mao G W, Yang T L 2008 Rev. Sci. Instrum. 79 083503Google Scholar

    [18]

    Yang J, Xu Y Q, Meng Z Q, Yang T L 2008 Phys. Plasmas 15 023503Google Scholar

    [19]

    唐金兰, 何洪庆, 韩先伟, 毛根旺, 杨涓, 万伟 2002 推进技术 23 303Google Scholar

    Tang J L, He H Q, Han X W, Mao G W, Yang J, Wan W 2002 J. Propul. Technol. 23 303Google Scholar

    [20]

    孙安邦, 毛根旺, 夏广庆, 陈茂林, 邢鹏涛 2012 推进技术 33 138Google Scholar

    Sun A B, Mao G W, Xia G Q, Chen M L, Xing P T 2012 J. Propul. Technol. 33 138Google Scholar

    [21]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [22]

    高海燕, 杨欣达, 周波, 贺青, 韦联福 2022 物理学报 71 064202Google Scholar

    Gao H Y, Yang X D, Zhou B, He Q, Wei L F 2022 Acta Phys. Sin. 71 064202Google Scholar

    [23]

    罗思J R 著 (吴坚强 等 译) 1998 工业等离子体工程·第Ⅰ卷·基本原理 (北京: 科学出版社)

    Roth J R (translated by Wu J Q) 1998 Industrial Plasma Engineering·Volume I·Basic Principles (Beijing: Science Press

  • 图 1  MPT地面实验系统

    Fig. 1.  Ground experiment system of MPT.

    图 2  圆柱腔结构尺度与谐振波模的关系

    Fig. 2.  Relation between the cavity dimension and cylindrical cavity resonance mode.

    图 3  谐振模波形因数$ {Q}_{0}^{}\delta ∕\lambda $与D/LP的关系

    Fig. 3.  Relation between resonant mode factor $ {Q}_{0}^{}\delta ∕\lambda $ and D/LP.

    图 4  MPT圆柱腔内氦气击穿电场强度随压强变化规律

    Fig. 4.  Relation between electric field intensity of helium discharge and pressure.

    图 5  不同长径比TM011模圆柱谐振腔功率密度分布 (a) LP/D = 1.56; (b) LP/D = 1; (c) LP/D = 0.5

    Fig. 5.  Energy density distribution inside of cylindrical cavity at TM011 mode and with different LP/D: (a) LP/D = 1.56; (b) LP/D = 1; (c) LP/D = 0.5.

    图 6  不同长径比TM011模圆柱谐振腔电场强度及其矢量分布 (a) LP/D = 1.56; (b) LP/D = 1; (c) LP/D = 0.5

    Fig. 6.  Electric field intensity and vector distribution inside of cylindrical cavity at TM011 mode and different LP/D: (a) LP/D = 1.56; (b) LP/D = 1; (c) LP/D = 0.5.

    图 7  推力器圆柱腔

    Fig. 7.  Thruster cavity.

    图 8  微波耦合探针

    Fig. 8.  Microwave coupling probe.

    图 9  调谐实验系统

    Fig. 9.  Tuning experiment system.

    图 10  圆柱腔回波损耗曲线

    Fig. 10.  Return loss curve.

    图 11  不同探针与长腔体长度对∆FreqLm的影响

    Fig. 11.  Influence of probe type and long cavity length on ∆Freq and Lm.

    图 12  LP/LF =146 mm/72.25 mm条件下探针结构及尺度对∆FreqLm的影响 (a)长4.5 mm、半径4.0—8.0 mm半球形探针; (b)半径3.5 mm、长3.0—6.0 mm球形探针和半径4.0 mm、长6.0—7.5 mm半球形探针

    Fig. 12.  Influence of structure and dimension of probe on ∆Freq and Lm as LP/LF = 146 mm/72.25 mm: (a) 4.5 mm length and 4.0–8.0 mm radius of half ball; (b) 3.5 mm radius and 3.0–6.0 mm length of ball, 4.0 mm radius and 6.0–7.5 mm length of half ball.

    图 13  LP/LF = 138 mm/65.5 mm腔体∆FreqLm随天线半径的变化规律 (a)球形与半球形天线长4.5 mm; (b)球形与半球形天线长3 mm

    Fig. 13.  Freq and Lm of the cavity at LP/LF = 138 mm/65.5 mm varying with probe radius: (a) Ball and half ball probe length of 4.5 mm; (b) ball and half ball probe length of 3 mm.

    图 14  3.5 mm球形探针半径及LP/LF = 135 mm/62.4 mm和131.5 mm/58 mm条件下∆FreqLm随探针长度的变化规律

    Fig. 14.  Variation of ∆Freq and Lm with the ball probe length at the condition of Rr = 3.5 mm and LP/LF = 135 mm/62.4 mm, 131.5 mm/58 mm.

    图 15  短腔体MPT氦气等离子体 (a) 内部等离子体; (b) 等离子体引出

    Fig. 15.  Helium plasma of MPT with the short cavity: (a) Plasma inside of cavity; (b) plasma extraction.

    图 16  短腔体MPT氦气放电实验参数随流量$ \dot{m} $变化规律(a)功率; (b) 压强

    Fig. 16.  Experiment parameter variation of He discharge in shorter cylinder cavity of MPT with flowrate $ \dot{m} $: (a) Power; (b) pressure.

  • [1]

    毛根旺, 何洪庆, 杨涓, 史韶莉 2012 推进技术 19 21

    Mao G W, He H Q, Yang J, Shi S L 2012 J. Propul. Technol. 19 21

    [2]

    杭观荣, 李诗凝, 康小录, 金逸舟, 孙雯熙 2023 推进技术 44 38Google Scholar

    Hang G R, Li S N, Kang X L, Jin Y Z, Sun W X 2023 J. Propul. Technol. 44 38Google Scholar

    [3]

    Herlin M A, Brown S C 1948 Phys. Rev. B 74 1650Google Scholar

    [4]

    Brown S C, MacDonald A D 1949 Phys. Rev. B 76 1629Google Scholar

    [5]

    Whitehair S, Asmussen J, Nakanishi S 1987 J. Propuls. Power 3 136Google Scholar

    [6]

    Sullivan D, Micci M 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 p3127

    [7]

    Yildiz M S, Celik M 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, July 27–29, 2015 p3926

    [8]

    Mehmet S Y, Murat C 2015 51st AIAA/SAE/ASEE Joint Propulsion Conference Orlando, FL, July 27–29, 2015

    [9]

    Ivanov S, Kolev S, Kiss’ovski Z 2021 Contrib. Plasm. Phys. 61 e202100017Google Scholar

    [10]

    Tsubasa O, Suk H, Hideaki O 2023 AIAA SciTech Forum and Exposition, National Harbor, MD, Februray 10, 2003

    [11]

    韩先伟, 毛根旺, 何洪庆 2002 固体火箭技术 25 21

    Han X W, Mao G W, He H Q 2002 Sol. Roc. Technol. 25 21

    [12]

    韩先伟, 何洪庆, 唐金兰, 毛根旺 2002 上海航天 19 1Google Scholar

    Han X W, He H Q, Tang J L, Mao G W 2002 Aerospace Shanghai 19 1Google Scholar

    [13]

    唐金兰, 何洪庆, 毛根旺, 万伟 2002 固体火箭技术 25 31

    Tang J L, He H Q, Mao G W, Wan W 2002 Solis Rocket Tech. 25 31

    [14]

    Yang J, He H Q, Mao G W, Han X W 2004 J. Spacecraft Rockets 41 126Google Scholar

    [15]

    杨涓, 毛根旺, 何洪庆, 唐金兰, 宋军, 苏纬仪 2004 物理学报 53 4282Google Scholar

    Yang J, Mao G W, He H Q, Tang J L, Song J, Su W Y 2004 Acta Phys. Sin. 53 4282Google Scholar

    [16]

    杨涓, 苏纬仪, 毛根旺, 夏广庆 2006 物理学报 55 6494Google Scholar

    Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494Google Scholar

    [17]

    Yang J, Xu Y Q, Tang J L, Mao G W, Yang T L 2008 Rev. Sci. Instrum. 79 083503Google Scholar

    [18]

    Yang J, Xu Y Q, Meng Z Q, Yang T L 2008 Phys. Plasmas 15 023503Google Scholar

    [19]

    唐金兰, 何洪庆, 韩先伟, 毛根旺, 杨涓, 万伟 2002 推进技术 23 303Google Scholar

    Tang J L, He H Q, Han X W, Mao G W, Yang J, Wan W 2002 J. Propul. Technol. 23 303Google Scholar

    [20]

    孙安邦, 毛根旺, 夏广庆, 陈茂林, 邢鹏涛 2012 推进技术 33 138Google Scholar

    Sun A B, Mao G W, Xia G Q, Chen M L, Xing P T 2012 J. Propul. Technol. 33 138Google Scholar

    [21]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [22]

    高海燕, 杨欣达, 周波, 贺青, 韦联福 2022 物理学报 71 064202Google Scholar

    Gao H Y, Yang X D, Zhou B, He Q, Wei L F 2022 Acta Phys. Sin. 71 064202Google Scholar

    [23]

    罗思J R 著 (吴坚强 等 译) 1998 工业等离子体工程·第Ⅰ卷·基本原理 (北京: 科学出版社)

    Roth J R (translated by Wu J Q) 1998 Industrial Plasma Engineering·Volume I·Basic Principles (Beijing: Science Press

  • [1] 曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙. 常压下预混甲烷和空气微波等离子体放电燃烧的实验研究. 物理学报, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [2] 杨敏, 王佳明, 齐凯旋, 李小平, 谢楷, 张琼杰, 刘浩岩, 董鹏. 等离子体鞘套宽带微波反射诊断方法. 物理学报, 2022, 71(23): 235201. doi: 10.7498/aps.71.20221179
    [3] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [4] 李志刚, 程立, 袁忠才, 汪家春, 时家明. 高功率微波作用下等离子体中的雪崩效应研究. 物理学报, 2017, 66(19): 195202. doi: 10.7498/aps.66.195202
    [5] 宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红. 射频击穿等离子体对高功率微波传输特性的影响. 物理学报, 2014, 63(6): 064101. doi: 10.7498/aps.63.064101
    [6] 袁忠才, 时家明. 高功率微波与等离子体相互作用理论和数值研究. 物理学报, 2014, 63(9): 095202. doi: 10.7498/aps.63.095202
    [7] 周前红, 董志伟, 陈京元. 110 GHz微波电离大气产生等离子体过程的理论研究. 物理学报, 2011, 60(12): 125202. doi: 10.7498/aps.60.125202
    [8] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [9] 杨涓, 龙春伟, 陈茂林, 许映桥, 谭小群. 外加磁场微波等离子体喷流对平面电磁波衰减的实验研究. 物理学报, 2009, 58(7): 4793-4798. doi: 10.7498/aps.58.4793
    [10] 杨 涓, 许映乔, 朱良明. 局域环境中微波等离子体电子密度诊断实验研究. 物理学报, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [11] 杨 涓, 刘文一, 朱国强, 毛根旺. 真空中微波等离子体喷流电子数密度分布规律实验研究. 物理学报, 2007, 56(1): 366-370. doi: 10.7498/aps.56.366
    [12] 傅文杰, 鄢 扬. 高功率微波在等离子体填充波导中的谐波产生. 物理学报, 2007, 56(12): 7100-7105. doi: 10.7498/aps.56.7100
    [13] 杨 涓, 苏纬仪, 毛根旺, 夏广庆. 外加磁场微波等离子推力器内流场数值模拟. 物理学报, 2006, 55(12): 6494-6499. doi: 10.7498/aps.55.6494
    [14] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析. 物理学报, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [15] 杨 涓, 毛根旺, 何洪庆, 唐金兰, 宋 军, 苏纬仪. 微波等离子推力器真空中工作的电微波系统及其实验. 物理学报, 2004, 53(12): 4282-4286. doi: 10.7498/aps.53.4282
    [16] 陈 钢, 潘佰良, 姚志欣. 气体脉冲放电等离子体阻抗的参量研究. 物理学报, 2003, 52(7): 1635-1639. doi: 10.7498/aps.52.1635
    [17] 辛 煜, 范叔平, 狄国庆, 沈明荣, 甘肇强. 微波等离子体化学汽相沉积法沉积CNx膜的研究. 物理学报, 1998, 47(1): 154-159. doi: 10.7498/aps.47.154
    [18] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [19] 宋汝安, 程先安, 周忠毅. 磁场-微波等离子体与大面积金刚石薄膜. 物理学报, 1990, 39(10): 1635-1639. doi: 10.7498/aps.39.1635
    [20] 王龙, 罗耀全, 李赞良, 王文书, 杨思泽, 李文莱, 戚霞枝, 赵华. 托卡马克微波预电离等离子体. 物理学报, 1989, 38(5): 714-721. doi: 10.7498/aps.38.714
计量
  • 文章访问数:  208
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-10
  • 修回日期:  2024-11-07
  • 上网日期:  2024-11-27
  • 刊出日期:  2025-01-05

/

返回文章
返回