-
通过超薄层插入与掺杂相结合的方式, 分别以激光染料DCM (4-(Dicyanomethylene) -2-methyl-6-(4-dimethyl-aminostyryl)-4H-pyran)、铱配合物Ir(ppy)3 (tris(2-phenylpyridine) iridium)和联苯乙烯衍生物BCzVB(1, 4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene)为红色、绿色和蓝色发射体, 制备了磷光敏化荧光白色有机电致发光器件(OLED). 通过改变DCM超薄层在CBP:Ir(ppy)3掺杂层中的插入位置实现了白色发光, 最高外量子效率为2.5%(电流效率为5.1 cd/A), 最高亮度为12400 cd/m2, 且其中一种器件在1 mA/cm2的电流密度下, 国际照明委员会(Commission Internationale de L'Eclairage, CIE)坐标达到了理想白光平衡点(0.33, 0.33). 白光的获得归因于Ir(ppy)3适合的掺杂比例和DCM适合的插入位置, 较好地均衡了红、绿、蓝三基色发光比例. 结果表明, 通过磷光敏化荧光实现三线态激子将部分能量传递给单线态激子, 可望实现高效率白色有机电致发光器件, 从而降低能耗并为促进OLED的应用提供更多空间.Although phosphorescent organic light-emitting devices (OLEDs) can have an internal quantum efficiency (IQE) of 100%, the IQE usually decays at high current densities due to triplet-triplet annihilation. Phosphor-sensitized fluorescence can realize the energy transfer between phosphorescent emitter and fluorescent emitter, and can be used to suppress the efficiency fluctuations and adjust the color of the device. With this in mind, white light emission including different colors of phosphorescent emitter and fluorescent emitter can be expected. Herein, phosphor-sensitized fluorescent white OLEDs are fabricated by combining ultra-thin layer insertion and doping, in which laser dyes DCM (4-(Dicyanomethylene)-2-methyl-6-(4-dimethyl-aminostyryl)-4H-pyran), iridium complexes Ir(ppy)3 (tris(2-phenylpyridine)iridium), and biphenyl ethylene derivatives BCzVB (1,4-bis[2- (3-N-ethylcarbazoryl)vinyl]benzene) are used as red, green and blue emitters, respectively. By adjusting the doping concentration of Ir(ppy)3 phosphorescent green emitter in CBP (4,4’-N,N’-dicarbazole-biphyenyl) host, with ultra-thin layers of BCzVB fluorescent blue emitter on both sides of CBP:Ir(ppy)3 doping system and with ultra-thin layer of DCM fluorescent red emitter inserting in CBP:Ir(ppy)3 layer, the three colors can be balanced. White emissions are obtained in the device, the highest external quantum efficiency is 2.5% (current efficiency of 5.1 cd/A), the maximum brightness is 12400 cd/m2, and Commission Internationale de l'Eclairage (CIE) co-ordinates can reach the ideal white light equilibrium point (0.33, 0.33) at a current density of 1 mA/cm2. The acquisition of white light is attributed to the appropriate doping ratio of Ir(ppy)3 and the position of DCM, which effectively balances the emission ratio of three primary colors: red, green, and blue. The results indicate that the partially energy transfer of triplet excitons to singlet excitons by phosphor-sensitized fluorescence scheme can be used to realize high-efficiency white organic electroluminescent devices, thereby reducing energy consumption and providing more room for promoting OLED applications.
-
Keywords:
- organic light-emitting devices /
- phosphor-sensitized fluorescence /
- ultrathin layer /
- laser dyes
[1] Kido J, Hongawa K, Okuyama K 1994 Appl. Phys. Lett. 64 815Google Scholar
[2] 吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar
Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar
[3] Hwang J, Choi H K, Moon J, Kim T Y, Shin J W, Joo C W, Han J H, Cho D H, Huh J W, Choi S Y, Lee J I, Chu H Y 2012 Appl. Phys. Lett. 100 133304Google Scholar
[4] Cho J T, Kim D H, Koh E I, Kim T W 2014 Thin Solid Films 570 63Google Scholar
[5] Chen Y W, Yang D Z, Qiao X F, Dai Y F, Sun Q, Ma D G 2020 J. Mater. Chem. C 8 6577Google Scholar
[6] Rosenow T C, Furno M, Reineke S, Olthof S, Lüssem B, Leo K 2010 J. Appl. Phys. 108 113113Google Scholar
[7] Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84Google Scholar
[8] Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503Google Scholar
[9] Reineke S, Schwartz G, Walzer K, Falke M, Leo K 2009 Appl. Phys. Lett. 94 163305Google Scholar
[10] Gao Z X, Wang F F, Guo K P, Wang H, Wei B, Xu B S 2014 Opt. Laser Technol. 56 20Google Scholar
[11] Murawski C, Leo K, Gather M C 2013 Adv. Mater. 25 6801Google Scholar
[12] Reineke S, Schwartz G, Walzer K, Leo K 2007 Appl. Phys. Lett. 91 123508Google Scholar
[13] Baldo M A, Thompson M E, Forrest S R 2000 Nature 403 750Google Scholar
[14] Heimel P, Mondal A, May F, Kowalsky W, Lennartz C, Andrienko D, Lovrincic R 2018 Nat. Commun. 9 4990Google Scholar
[15] D’Andrade B W, Baldo M A, Adachi C, Brooks J, Thompson M E, Forrest S R 2001 Appl. Phys. Lett. 79 1045Google Scholar
[16] Chen X, Huang Y, Luo D, Chang C, Lu C, Su H 2023 Chem. Eur. J. 29 e202300034Google Scholar
[17] Baek S, Park J Y, Woo S, Lee W, Kim W, Cheon H, Kim Y, Lee J 2024 Small Struct. 5 2300564Google Scholar
[18] Cheong K, Han S W, Lee J Y 2024 Small Methods 8 2301710
[19] Liang N, Zhao Y K, Wu Y Z, Zhang C R, Shao M 2021 Appl. Phys. Lett. 119 053301Google Scholar
[20] Zhou Y, Gao H, Wang J, Yeung F S Y, Lin S H, Li X B, Liao S L, Luo D X, Kwok H S, Liu B Q 2023 Electronics 12 3164Google Scholar
[21] Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar
[22] Vipin C K, Shukla A, Rajeev K, Hasan M, Lo S C, Namdas E B, Ajayaghosh A, Unni K N N 2021 J. Phys. Chem. C 125 22809Google Scholar
[23] Yang S H, Huang S F, Chang C H, Chung C H 2011 J. Lumin. 131 2106Google Scholar
[24] Ko C W, Tao Y T, Lin J T, Justin Thomas K R 2002 Chem. Mater. 14 357Google Scholar
[25] Petrova P K, Ivanov P I, Tomova R L 2014 J. Phys. : Conf. Ser. 558 012028Google Scholar
[26] Miao Y Q, Du X G, Wang H, Liu H H, Jia H S, Xu B S, Hao Y Y, Liu X G, Li W L, Huang W 2014 RSC Adv. 5 4261Google Scholar
[27] 邹文静, 吴有智, 张材荣 2024 兰州理工大学学报 50 21
Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21 Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21
[28] Gulbinas V, Zaushitsyn Y, Sundström V, Hertel D, Bässler H, Yartsev A 2002 Phys. Rev. Lett. 89 107401Google Scholar
[29] Liu Z G, Chen Z J, Gong H Q 2005 Chinese Phys. Lett. 22 1536Google Scholar
-
图 10 DCM超薄层在CBP:Ir(ppy)3中离(+)BCzVB/CBP:Ir(ppy)3阳极侧界面距离分别为y = 10, 12, 14, 16 nm器件的 (a)电流密度-电压特性曲线; (b)电流效率-电流密度-亮度特性曲线
Fig. 10. Current density-voltage (a) and current efficiency-current density-brightness (b) characteristics of devices with ultra-thin DCM layer in CBP:Ir(ppy)3 at distances of y = 10, 12, 14, 16 nm, respectively, from the (+) BCzVB/CBP:Ir(ppy)3 interface at anode side.
表 1 对应y = 10, 12, 14, 16 nm器件的CIE色坐标变化范围(@0.2—200 mA/cm2)
Table 1. Variation of CIE color coordinates of devices with y = 10, 12, 14, 16 nm (@0.2–200 mA/cm2)
器件 CIE色坐标变化范围 B1 (y = 10) (0.28—0.22, 0.32—0.21) B2 (y = 12) (0.34—0.23, 0.36—0.23) B3 (y = 14) (0.41—0.25, 0.40—0.26) B4 (y = 16) (0.46—0.27, 0.43—0.31) 表 2 OLED器件性能总结
Table 2. Summary of the EL performances of the OLED.
器件 最大电流效率/(cd·A–1) 最高亮度/(cd·m–2) A0 (x = 0.7) 9.53 23760 A1 (x = 6) 54.9 104900 A2 (x = 3) 52.1 111276 A3 (x = 1) 45.4 82830 A4 (x = 0.7) 34.9 39072 A5 (x = 0.4) 28.2 35046 B1 (y = 10) 5.1 12400 B2 (y = 12) 4.4 11900 B3 (y = 14) 3.6 11500 B4 (y = 16) 2.85 10800 -
[1] Kido J, Hongawa K, Okuyama K 1994 Appl. Phys. Lett. 64 815Google Scholar
[2] 吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar
Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar
[3] Hwang J, Choi H K, Moon J, Kim T Y, Shin J W, Joo C W, Han J H, Cho D H, Huh J W, Choi S Y, Lee J I, Chu H Y 2012 Appl. Phys. Lett. 100 133304Google Scholar
[4] Cho J T, Kim D H, Koh E I, Kim T W 2014 Thin Solid Films 570 63Google Scholar
[5] Chen Y W, Yang D Z, Qiao X F, Dai Y F, Sun Q, Ma D G 2020 J. Mater. Chem. C 8 6577Google Scholar
[6] Rosenow T C, Furno M, Reineke S, Olthof S, Lüssem B, Leo K 2010 J. Appl. Phys. 108 113113Google Scholar
[7] Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84Google Scholar
[8] Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503Google Scholar
[9] Reineke S, Schwartz G, Walzer K, Falke M, Leo K 2009 Appl. Phys. Lett. 94 163305Google Scholar
[10] Gao Z X, Wang F F, Guo K P, Wang H, Wei B, Xu B S 2014 Opt. Laser Technol. 56 20Google Scholar
[11] Murawski C, Leo K, Gather M C 2013 Adv. Mater. 25 6801Google Scholar
[12] Reineke S, Schwartz G, Walzer K, Leo K 2007 Appl. Phys. Lett. 91 123508Google Scholar
[13] Baldo M A, Thompson M E, Forrest S R 2000 Nature 403 750Google Scholar
[14] Heimel P, Mondal A, May F, Kowalsky W, Lennartz C, Andrienko D, Lovrincic R 2018 Nat. Commun. 9 4990Google Scholar
[15] D’Andrade B W, Baldo M A, Adachi C, Brooks J, Thompson M E, Forrest S R 2001 Appl. Phys. Lett. 79 1045Google Scholar
[16] Chen X, Huang Y, Luo D, Chang C, Lu C, Su H 2023 Chem. Eur. J. 29 e202300034Google Scholar
[17] Baek S, Park J Y, Woo S, Lee W, Kim W, Cheon H, Kim Y, Lee J 2024 Small Struct. 5 2300564Google Scholar
[18] Cheong K, Han S W, Lee J Y 2024 Small Methods 8 2301710
[19] Liang N, Zhao Y K, Wu Y Z, Zhang C R, Shao M 2021 Appl. Phys. Lett. 119 053301Google Scholar
[20] Zhou Y, Gao H, Wang J, Yeung F S Y, Lin S H, Li X B, Liao S L, Luo D X, Kwok H S, Liu B Q 2023 Electronics 12 3164Google Scholar
[21] Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar
[22] Vipin C K, Shukla A, Rajeev K, Hasan M, Lo S C, Namdas E B, Ajayaghosh A, Unni K N N 2021 J. Phys. Chem. C 125 22809Google Scholar
[23] Yang S H, Huang S F, Chang C H, Chung C H 2011 J. Lumin. 131 2106Google Scholar
[24] Ko C W, Tao Y T, Lin J T, Justin Thomas K R 2002 Chem. Mater. 14 357Google Scholar
[25] Petrova P K, Ivanov P I, Tomova R L 2014 J. Phys. : Conf. Ser. 558 012028Google Scholar
[26] Miao Y Q, Du X G, Wang H, Liu H H, Jia H S, Xu B S, Hao Y Y, Liu X G, Li W L, Huang W 2014 RSC Adv. 5 4261Google Scholar
[27] 邹文静, 吴有智, 张材荣 2024 兰州理工大学学报 50 21
Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21 Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21
[28] Gulbinas V, Zaushitsyn Y, Sundström V, Hertel D, Bässler H, Yartsev A 2002 Phys. Rev. Lett. 89 107401Google Scholar
[29] Liu Z G, Chen Z J, Gong H Q 2005 Chinese Phys. Lett. 22 1536Google Scholar
计量
- 文章访问数: 264
- PDF下载量: 8
- 被引次数: 0