搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷光敏化荧光白色有机电致发光器件

邹文静 赵玉康 吴有智 张材荣

引用本文:
Citation:

磷光敏化荧光白色有机电致发光器件

邹文静, 赵玉康, 吴有智, 张材荣
cstr: 32037.14.aps.74.20241294

White organic light-emitting devices based on phosphor-sensitized fluorescence

ZOU Wenjing, ZHAO Yukang, WU Youzhi, ZHANG Cairong
cstr: 32037.14.aps.74.20241294
PDF
HTML
导出引用
  • 通过超薄层插入与掺杂相结合的方式, 分别以激光染料DCM (4-(Dicyanomethylene) -2-methyl-6-(4-dimethyl-aminostyryl)-4H-pyran)、铱配合物Ir(ppy)3 (tris(2-phenylpyridine) iridium)和联苯乙烯衍生物BCzVB(1, 4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene)为红色、绿色和蓝色发射体, 制备了磷光敏化荧光白色有机电致发光器件(OLED). 通过改变DCM超薄层在CBP:Ir(ppy)3掺杂层中的插入位置实现了白色发光, 最高外量子效率为2.5%(电流效率为5.1 cd/A), 最高亮度为12400 cd/m2, 且其中一种器件在1 mA/cm2的电流密度下, 国际照明委员会(Commission Internationale de L'Eclairage, CIE)坐标达到了理想白光平衡点(0.33, 0.33). 白光的获得归因于Ir(ppy)3适合的掺杂比例和DCM适合的插入位置, 较好地均衡了红、绿、蓝三基色发光比例. 结果表明, 通过磷光敏化荧光实现三线态激子将部分能量传递给单线态激子, 可望实现高效率白色有机电致发光器件, 从而降低能耗并为促进OLED的应用提供更多空间.
    Although phosphorescent organic light-emitting devices (OLEDs) can have an internal quantum efficiency (IQE) of 100%, the IQE usually decays at high current densities due to triplet-triplet annihilation. Phosphor-sensitized fluorescence can realize the energy transfer between phosphorescent emitter and fluorescent emitter, and can be used to suppress the efficiency fluctuations and adjust the color of the device. With this in mind, white light emission including different colors of phosphorescent emitter and fluorescent emitter can be expected. Herein, phosphor-sensitized fluorescent white OLEDs are fabricated by combining ultra-thin layer insertion and doping, in which laser dyes DCM (4-(Dicyanomethylene)-2-methyl-6-(4-dimethyl-aminostyryl)-4H-pyran), iridium complexes Ir(ppy)3 (tris(2-phenylpyridine)iridium), and biphenyl ethylene derivatives BCzVB (1,4-bis[2- (3-N-ethylcarbazoryl)vinyl]benzene) are used as red, green and blue emitters, respectively. By adjusting the doping concentration of Ir(ppy)3 phosphorescent green emitter in CBP (4,4’-N,N’-dicarbazole-biphyenyl) host, with ultra-thin layers of BCzVB fluorescent blue emitter on both sides of CBP:Ir(ppy)3 doping system and with ultra-thin layer of DCM fluorescent red emitter inserting in CBP:Ir(ppy)3 layer, the three colors can be balanced. White emissions are obtained in the device, the highest external quantum efficiency is 2.5% (current efficiency of 5.1 cd/A), the maximum brightness is 12400 cd/m2, and Commission Internationale de l'Eclairage (CIE) co-ordinates can reach the ideal white light equilibrium point (0.33, 0.33) at a current density of 1 mA/cm2. The acquisition of white light is attributed to the appropriate doping ratio of Ir(ppy)3 and the position of DCM, which effectively balances the emission ratio of three primary colors: red, green, and blue. The results indicate that the partially energy transfer of triplet excitons to singlet excitons by phosphor-sensitized fluorescence scheme can be used to realize high-efficiency white organic electroluminescent devices, thereby reducing energy consumption and providing more room for promoting OLED applications.
      通信作者: 吴有智, youzhiwu@163.com
    • 基金项目: 国家自然科学基金(批准号: 11964016)资助的课题.
      Corresponding author: WU Youzhi, youzhiwu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11964016).
    [1]

    Kido J, Hongawa K, Okuyama K 1994 Appl. Phys. Lett. 64 815Google Scholar

    [2]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [3]

    Hwang J, Choi H K, Moon J, Kim T Y, Shin J W, Joo C W, Han J H, Cho D H, Huh J W, Choi S Y, Lee J I, Chu H Y 2012 Appl. Phys. Lett. 100 133304Google Scholar

    [4]

    Cho J T, Kim D H, Koh E I, Kim T W 2014 Thin Solid Films 570 63Google Scholar

    [5]

    Chen Y W, Yang D Z, Qiao X F, Dai Y F, Sun Q, Ma D G 2020 J. Mater. Chem. C 8 6577Google Scholar

    [6]

    Rosenow T C, Furno M, Reineke S, Olthof S, Lüssem B, Leo K 2010 J. Appl. Phys. 108 113113Google Scholar

    [7]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84Google Scholar

    [8]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503Google Scholar

    [9]

    Reineke S, Schwartz G, Walzer K, Falke M, Leo K 2009 Appl. Phys. Lett. 94 163305Google Scholar

    [10]

    Gao Z X, Wang F F, Guo K P, Wang H, Wei B, Xu B S 2014 Opt. Laser Technol. 56 20Google Scholar

    [11]

    Murawski C, Leo K, Gather M C 2013 Adv. Mater. 25 6801Google Scholar

    [12]

    Reineke S, Schwartz G, Walzer K, Leo K 2007 Appl. Phys. Lett. 91 123508Google Scholar

    [13]

    Baldo M A, Thompson M E, Forrest S R 2000 Nature 403 750Google Scholar

    [14]

    Heimel P, Mondal A, May F, Kowalsky W, Lennartz C, Andrienko D, Lovrincic R 2018 Nat. Commun. 9 4990Google Scholar

    [15]

    D’Andrade B W, Baldo M A, Adachi C, Brooks J, Thompson M E, Forrest S R 2001 Appl. Phys. Lett. 79 1045Google Scholar

    [16]

    Chen X, Huang Y, Luo D, Chang C, Lu C, Su H 2023 Chem. Eur. J. 29 e202300034Google Scholar

    [17]

    Baek S, Park J Y, Woo S, Lee W, Kim W, Cheon H, Kim Y, Lee J 2024 Small Struct. 5 2300564Google Scholar

    [18]

    Cheong K, Han S W, Lee J Y 2024 Small Methods 8 2301710

    [19]

    Liang N, Zhao Y K, Wu Y Z, Zhang C R, Shao M 2021 Appl. Phys. Lett. 119 053301Google Scholar

    [20]

    Zhou Y, Gao H, Wang J, Yeung F S Y, Lin S H, Li X B, Liao S L, Luo D X, Kwok H S, Liu B Q 2023 Electronics 12 3164Google Scholar

    [21]

    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar

    [22]

    Vipin C K, Shukla A, Rajeev K, Hasan M, Lo S C, Namdas E B, Ajayaghosh A, Unni K N N 2021 J. Phys. Chem. C 125 22809Google Scholar

    [23]

    Yang S H, Huang S F, Chang C H, Chung C H 2011 J. Lumin. 131 2106Google Scholar

    [24]

    Ko C W, Tao Y T, Lin J T, Justin Thomas K R 2002 Chem. Mater. 14 357Google Scholar

    [25]

    Petrova P K, Ivanov P I, Tomova R L 2014 J. Phys. : Conf. Ser. 558 012028Google Scholar

    [26]

    Miao Y Q, Du X G, Wang H, Liu H H, Jia H S, Xu B S, Hao Y Y, Liu X G, Li W L, Huang W 2014 RSC Adv. 5 4261Google Scholar

    [27]

    邹文静, 吴有智, 张材荣 2024 兰州理工大学学报 50 21

    Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21 Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21

    [28]

    Gulbinas V, Zaushitsyn Y, Sundström V, Hertel D, Bässler H, Yartsev A 2002 Phys. Rev. Lett. 89 107401Google Scholar

    [29]

    Liu Z G, Chen Z J, Gong H Q 2005 Chinese Phys. Lett. 22 1536Google Scholar

  • 图 1  有机材料的化学结构

    Fig. 1.  The chemical structure of organic materials.

    图 2  (a) OLED器件结构示意图; (b) OLED器件能级结构示意图

    Fig. 2.  Schematic diagram of (a) device structure and (b) the corresponding energy level of the OLED.

    图 3  不同Ir(ppy)3掺杂浓度(6%, 3%, 1%, 0.7%和0.4%)器件的EL光谱图(@20 mA/cm2)

    Fig. 3.  EL spectra (@20 mA/cm2) of devices with different Ir(ppy)3 doping concentrations (6%, 3%, 1%, 0.7%, 0.4%).

    图 4  BCzVB/CBP:Ir(ppy)3结构能量传递原理图

    Fig. 4.  Schematic diagram of the energy transfer with the structure of BCzVB/ CBP:Ir(ppy)3.

    图 5  不同Ir(ppy)3掺杂浓度(6%, 3%, 1%, 0.7%, 0.4%)器件的电流效率-电流密度-亮度特性曲线

    Fig. 5.  Current efficiency-current density-brightness characteristics of devices with different Ir(ppy)3 doping concentrations (6%, 3%, 1%, 0.7%, 0.4%).

    图 6  在0.7% Ir(ppy)3掺杂浓度条件下两侧蒸镀和单侧蒸镀BCzVB器件EL光谱(@20 mA/cm2)比较

    Fig. 6.  Comparison of EL spectra (@ 20 mA/cm2) of devices with BCzVB deposited on both and one sides at a doping concentration of 0.7% Ir(ppy)3.

    图 7  CBP (20 nm), CBP:Ir(ppy)3 (0.7%, 20 nm)和BCzVB (0.3 nm)/CBP:Ir(ppy)3(0.7%, 20 nm)/BCzVB (0.3 nm)薄膜的激发和光致发光光谱

    Fig. 7.  Excitation and Photoluminescence spectra of CBP (20 nm), CBP:Ir(ppy)3 (0.7%, 20 nm) and BCzVB (0.3 nm)/CBP:Ir(ppy)3 (0.7%, 20 nm)/BCzVB (0.3 nm) film.

    图 8  DCM超薄层在CBP:Ir(ppy)3中离(+)BCzVB/CBP:Ir(ppy)3阳极侧界面距离分别为y = 10, 12, 14, 16 nm器件的EL光谱(@20 mA/cm2)

    Fig. 8.  EL spectra (@20 mA/cm2) of devices with ultra-thin DCM layer in CBP:Ir(ppy)3 at distances of y = 10, 12, 14, 16 nm, respectively, from the (+) BCzVB/CBP:Ir (ppy)3 interface at anode side.

    图 9  BCzVB/CBP:Ir(ppy)3/DCM/CBP:Ir(ppy)3/BCzVB结构能量传递原理图

    Fig. 9.  Schematic diagram of the energy transfer with the structure of BCzVB/ CBP:Ir(ppy)3/DCM/CBP:Ir(ppy)3/BCzVB.

    图 10  DCM超薄层在CBP:Ir(ppy)3中离(+)BCzVB/CBP:Ir(ppy)3阳极侧界面距离分别为y = 10, 12, 14, 16 nm器件的 (a)电流密度-电压特性曲线; (b)电流效率-电流密度-亮度特性曲线

    Fig. 10.  Current density-voltage (a) and current efficiency-current density-brightness (b) characteristics of devices with ultra-thin DCM layer in CBP:Ir(ppy)3 at distances of y = 10, 12, 14, 16 nm, respectively, from the (+) BCzVB/CBP:Ir(ppy)3 interface at anode side.

    图 11  y = 12 nm器件在不同电流密度(电压)下的EL光谱图

    Fig. 11.  EL spectra of the device with y = 12 nm at different current density (voltage).

    表 1  对应y = 10, 12, 14, 16 nm器件的CIE色坐标变化范围(@0.2—200 mA/cm2)

    Table 1.  Variation of CIE color coordinates of devices with y = 10, 12, 14, 16 nm (@0.2–200 mA/cm2)

    器件CIE色坐标变化范围
    B1 (y = 10)(0.28—0.22, 0.32—0.21)
    B2 (y = 12)(0.34—0.23, 0.36—0.23)
    B3 (y = 14)(0.41—0.25, 0.40—0.26)
    B4 (y = 16)(0.46—0.27, 0.43—0.31)
    下载: 导出CSV

    表 2  OLED器件性能总结

    Table 2.  Summary of the EL performances of the OLED.

    器件最大电流效率/(cd·A–1)最高亮度/(cd·m–2)
    A0 (x = 0.7)9.5323760
    A1 (x = 6)54.9104900
    A2 (x = 3)52.1111276
    A3 (x = 1)45.482830
    A4 (x = 0.7)34.939072
    A5 (x = 0.4)28.235046
    B1 (y = 10)5.112400
    B2 (y = 12)4.411900
    B3 (y = 14)3.611500
    B4 (y = 16)2.8510800
    下载: 导出CSV
  • [1]

    Kido J, Hongawa K, Okuyama K 1994 Appl. Phys. Lett. 64 815Google Scholar

    [2]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [3]

    Hwang J, Choi H K, Moon J, Kim T Y, Shin J W, Joo C W, Han J H, Cho D H, Huh J W, Choi S Y, Lee J I, Chu H Y 2012 Appl. Phys. Lett. 100 133304Google Scholar

    [4]

    Cho J T, Kim D H, Koh E I, Kim T W 2014 Thin Solid Films 570 63Google Scholar

    [5]

    Chen Y W, Yang D Z, Qiao X F, Dai Y F, Sun Q, Ma D G 2020 J. Mater. Chem. C 8 6577Google Scholar

    [6]

    Rosenow T C, Furno M, Reineke S, Olthof S, Lüssem B, Leo K 2010 J. Appl. Phys. 108 113113Google Scholar

    [7]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84Google Scholar

    [8]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503Google Scholar

    [9]

    Reineke S, Schwartz G, Walzer K, Falke M, Leo K 2009 Appl. Phys. Lett. 94 163305Google Scholar

    [10]

    Gao Z X, Wang F F, Guo K P, Wang H, Wei B, Xu B S 2014 Opt. Laser Technol. 56 20Google Scholar

    [11]

    Murawski C, Leo K, Gather M C 2013 Adv. Mater. 25 6801Google Scholar

    [12]

    Reineke S, Schwartz G, Walzer K, Leo K 2007 Appl. Phys. Lett. 91 123508Google Scholar

    [13]

    Baldo M A, Thompson M E, Forrest S R 2000 Nature 403 750Google Scholar

    [14]

    Heimel P, Mondal A, May F, Kowalsky W, Lennartz C, Andrienko D, Lovrincic R 2018 Nat. Commun. 9 4990Google Scholar

    [15]

    D’Andrade B W, Baldo M A, Adachi C, Brooks J, Thompson M E, Forrest S R 2001 Appl. Phys. Lett. 79 1045Google Scholar

    [16]

    Chen X, Huang Y, Luo D, Chang C, Lu C, Su H 2023 Chem. Eur. J. 29 e202300034Google Scholar

    [17]

    Baek S, Park J Y, Woo S, Lee W, Kim W, Cheon H, Kim Y, Lee J 2024 Small Struct. 5 2300564Google Scholar

    [18]

    Cheong K, Han S W, Lee J Y 2024 Small Methods 8 2301710

    [19]

    Liang N, Zhao Y K, Wu Y Z, Zhang C R, Shao M 2021 Appl. Phys. Lett. 119 053301Google Scholar

    [20]

    Zhou Y, Gao H, Wang J, Yeung F S Y, Lin S H, Li X B, Liao S L, Luo D X, Kwok H S, Liu B Q 2023 Electronics 12 3164Google Scholar

    [21]

    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar

    [22]

    Vipin C K, Shukla A, Rajeev K, Hasan M, Lo S C, Namdas E B, Ajayaghosh A, Unni K N N 2021 J. Phys. Chem. C 125 22809Google Scholar

    [23]

    Yang S H, Huang S F, Chang C H, Chung C H 2011 J. Lumin. 131 2106Google Scholar

    [24]

    Ko C W, Tao Y T, Lin J T, Justin Thomas K R 2002 Chem. Mater. 14 357Google Scholar

    [25]

    Petrova P K, Ivanov P I, Tomova R L 2014 J. Phys. : Conf. Ser. 558 012028Google Scholar

    [26]

    Miao Y Q, Du X G, Wang H, Liu H H, Jia H S, Xu B S, Hao Y Y, Liu X G, Li W L, Huang W 2014 RSC Adv. 5 4261Google Scholar

    [27]

    邹文静, 吴有智, 张材荣 2024 兰州理工大学学报 50 21

    Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21 Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21

    [28]

    Gulbinas V, Zaushitsyn Y, Sundström V, Hertel D, Bässler H, Yartsev A 2002 Phys. Rev. Lett. 89 107401Google Scholar

    [29]

    Liu Z G, Chen Z J, Gong H Q 2005 Chinese Phys. Lett. 22 1536Google Scholar

  • [1] 徐冲, 牛连斌, 钱雅翠, 文林, 熊元强, 彭浩南, 关云霞. Fe(NH2trz)3·(BF4)2掺杂聚芴的有机电致发光器件. 物理学报, 2021, 70(7): 077202. doi: 10.7498/aps.70.20201444
    [2] 肖心明, 朱龙山, 关宇, 华杰, 王洪梅, 董贺, 汪津. 低效率滚降、发光颜色稳定的磷光白色有机电致发光器件. 物理学报, 2020, 69(4): 047202. doi: 10.7498/aps.69.20191594
    [3] 陶洪, 高栋雨, 刘佰全, 王磊, 邹建华, 徐苗, 彭俊彪. 电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升. 物理学报, 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [4] 吴清洋, 谢国华, 张振松, 岳守振, 王鹏, 陈宇, 郭闰达, 赵毅, 刘式墉. 基于连续性掺杂的高效全荧光白色有机电致发光器件的研究. 物理学报, 2013, 62(19): 197204. doi: 10.7498/aps.62.197204
    [5] 刘永军, 王斐儒, 孙伟民, 刘晓颀, 张伶莉. 胆甾相液晶激光器的调谐特性研究. 物理学报, 2013, 62(7): 076101. doi: 10.7498/aps.62.076101
    [6] 张新稳, 胡琦. 有机电致发光器件的稳定性. 物理学报, 2012, 61(20): 207802. doi: 10.7498/aps.61.207802
    [7] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [8] 陈平, 赵理, 段羽, 程刚, 赵毅, 刘式墉. 一种用于堆叠结构有机发光二极管的新的电荷生成层. 物理学报, 2011, 60(9): 097203. doi: 10.7498/aps.60.097203
    [9] 乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊. 自旋极化有机电致发光器件中单线态与三线态激子的形成及调控. 物理学报, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [10] 牛连斌, 关云霞. 富勒烯掺杂NPB空穴传输层的有机电致发光器件. 物理学报, 2009, 58(7): 4931-4935. doi: 10.7498/aps.58.4931
    [11] 文雯, 王博, 李璐, 于军胜, 蒋亚东. 基于红色荧光染料3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene的高性能白色有机电致发光器件. 物理学报, 2009, 58(11): 8014-8020. doi: 10.7498/aps.58.8014
    [12] 吴晓明, 华玉林, 印寿根, 张国辉, 惠娟利, 张丽娟, 王 宇. 不同主体双发光层白色有机电致发光器件的性能研究. 物理学报, 2008, 57(2): 1150-1154. doi: 10.7498/aps.57.1150
    [13] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究. 物理学报, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [14] 张丽娟, 华玉林, 吴晓明, 张国辉, 王 宇, 印寿根. 同时掺杂磷光和荧光染料的白色有机电致发光器件性能研究. 物理学报, 2008, 57(3): 1913-1917. doi: 10.7498/aps.57.1913
    [15] 唐晓庆, 于军胜, 李 璐, 王 军, 蒋亚东. 铱金属配合物磷光材料掺杂聚合物体系的电致发光特性. 物理学报, 2008, 57(10): 6620-6626. doi: 10.7498/aps.57.6620
    [16] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性. 物理学报, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [17] 张国辉, 华玉林, 吴晓明, 印寿根, 牛 霞, 惠娟利, 王 宇, 张丽娟. 一种多层白色磷光有机电致发光器件的制备及性能研究. 物理学报, 2007, 56(9): 5408-5412. doi: 10.7498/aps.56.5408
    [18] 张国辉, 华玉林, 吴空物, 吴晓明, 印寿根, 惠娟利, 安海萍, 朱飞剑, 牛 霞. 利用BCP层调节白色磷光有机电致发光器件色度的研究. 物理学报, 2007, 56(6): 3559-3563. doi: 10.7498/aps.56.3559
    [19] 张晓波, 曹 进, 委福祥, 蒋雪茵, 张志林, 朱文清, 许少鸿. 发光层厚度变化的高效红色有机电致磷光器件. 物理学报, 2006, 55(1): 119-124. doi: 10.7498/aps.55.119
    [20] 杨盛谊, 徐征, 刘姗姗, 董金凤, 章婷, 徐叙瑢, 张莉, 杨展澜, 吴谨光. 窄谱带绿色有机电致发光器件. 物理学报, 2001, 50(5): 973-976. doi: 10.7498/aps.50.973
计量
  • 文章访问数:  265
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-13
  • 修回日期:  2024-11-20
  • 上网日期:  2024-12-10

/

返回文章
返回