搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的铸件凝固过程动态收缩行为

张童 王加豪 田帅 孙旭冉 李日

引用本文:
Citation:

基于机器学习的铸件凝固过程动态收缩行为

张童, 王加豪, 田帅, 孙旭冉, 李日
cstr: 32037.14.aps.74.20241581

Machine learning-based study of dynamic shrinkage behavior during solidification of castings

ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri
cstr: 32037.14.aps.74.20241581
PDF
HTML
导出引用
  • 合金凝固过程中的收缩行为是决定铸锭质量的关键因素之一, 利用数值模拟方法可以预测铸锭缩孔. 本文建立了一种基于机器学习的动网格模型, 能够模拟铸件凝固过程的动态收缩行为. 采用元胞自动机进行铸件凝固模拟, 采用径向基函数算法(radial basis function, RBF)和支持向量机算法(support vector machines, SVM)计算凝固收缩过程的网格运动位移, 从而对凝固过程收缩的动态模拟. 采用该模型计算了Al-4.7%Cu合金铸锭的缩孔形貌, 并进行了对应的浇铸实验验证, 模拟结果与实验结果的误差不超过2%, 符合较好. 说明该模型能够有效捕捉凝固收缩引起的铸件变形的动态过程, 且能够捕捉固液界面复杂形貌的演变, 为凝固过程数值模拟提供了一种新思路.
    Shrinkage cavities and porosity are the main defects generated in the solidification process of castings. These defects are caused by the alloy’s contraction during solidification, with the final solidified area not being effectively compensated for by the liquid metal, resulting in cavitation defects. Shrinkage cavities and porosity significantly reduce the mechanical properties of castings and shorten their service lives, thus necessitating appropriate process to eliminate them. Utilizing numerical simulation technology can effectively predict the shrinkage of castings during solidification and optimize the process based on simulation results, thereby reducing the occurrence of shrinkage defects, which is a low-cost and high-efficiency method. In this work, a machine learning-driven dynamic mesh model is established to simulate the dynamic shrinkage behavior of castings during solidification. Cellular automata are used to simulate the solidification process of castings, dynamically marking the displacement of boundary points and calculating the displacement of other grids using RBF neural network algorithms and support vector machine algorithms, thereby achieving the dynamic simulation of the solidification process. The model is used to simulate the shrinkage cavity morphology of the Al-4.7%Cu alloy solidification process, and corresponding casting experiments are designed for verification. Comparisons between simulation results and experimental results indicate that this coupled method can effectively capture the casting deformation caused by solidification shrinkage, the evolution of complex solid-liquid interface morphologies, and the deformation of internal grids within the castings. Compared with the experimental results, the simulation results have an error of no more than 2%, providing a new approach for numerically simulating the solidification process.
      通信作者: 李日, sdzllr@163.com
    • 基金项目: 国家自然科学基金(批准号: 51975182)资助的课题.
      Corresponding author: LI Ri, sdzllr@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51975182).
    [1]

    赵健, 张毅 1985 铸造 5 1

    Zhao J, Zhang Y 1985 Foundry 5 1

    [2]

    俞占扬, 张慧, 王明林, 王学兵, 张开发, 王飞 2023 特种铸造及有色合金 41 1073

    Yu Z Y, Zhang H, Wang M L, Wang X B, Zhang K F, Wang F 2023 Special Casting & Nonferrous Alloys 41 1073

    [3]

    Piwonka H, Flemings M C 1966 Metallurgical Trans. 1 1431

    [4]

    Niyama H 1960 Tran. Jpn. I. Met. 2 57

    [5]

    贾宝仟, 柳百成 1996 热加工工艺 2 34

    Jia B Q, Liu B C 1996 Hot Working Technol. 2 34

    [6]

    Stefanescu D M, Wang T 1992 Int. J. Heat Mass Tran. 35 1125Google Scholar

    [7]

    Carlson K D, Beckermann C 2009 Metall. Mater. Trans. A 40 163Google Scholar

    [8]

    Lee C Y 1998 Metallurgical and Materials Transactions A 29 3255

    [9]

    Khalajzadeh V, Carlson K D, Backman D G, Beckermann C 2017 Metall. Mater. Trans. A 48 1797Google Scholar

    [10]

    Li K, Yin J, Lu Z, Kong X, Zhang R, Liu W Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) Tsukuba, Japan, November 11–15, 2012 p170

    [11]

    Guo Z L, Shi B C, Wang N C 2000 J. Comp. Phys. 165 288

    [12]

    Rendall T C, Allen C B 2009 J. Comput. Phys. 228 6231Google Scholar

    [13]

    Beckert A, Wendland H 2001 Aerosp. Sci. Technol. 5 125Google Scholar

    [14]

    董士虎, 张红伟, 吕文朋, 雷洪, 王强 2024 金属学报 60 388

    Dong S H, Zhang H W, Lv W P, Lei H, Wang Q 2024 Acta Metall. Sin. 60 388

    [15]

    杨朝蓉, 孙东科, 潘诗琰, 戴挺, 朱鸣芳 2009 金属学报 45 43

    Yang C R, Sun D K, Pan S Y, Dai T, Zhu M F 2009 Acta Metall. Sin. 45 43

    [16]

    杨莹莹, 李日, 周靖超, 赵朝阳 2016 工程热物理学报 37 2613

    Yang Y Y, Li R, Zhou J C, Zhao C Y 2016 J. Eng. Thermophys 37 2613

    [17]

    周靖超 2017 硕士学位论文(天津: 河北工业大学)

    Zhou J C 2017 M. S. Thesis (Tianjin: Hebei University of Technology

    [18]

    连庆庆 2017 硕士学位论文(天津: 河北工业大学)

    Lian Q Q 2017 M. S. Thesis (Tianjin: Hebei University of Technology

    [19]

    刘林 2018 硕士学位论文(天津: 河北工业大学)

    Liu L 2018 M. S. Thesis (Tianjin: Hebei University of Technology

    [20]

    马旺 2020 硕士学位论文(天津: 河北工业大学)

    Ma W 2020 M. S. Thesis (Tianjin: Hebei University of Technology

    [21]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288Google Scholar

    [22]

    Estruch O, Lehmkuhl O, Borrell R, Segarra C P, Oliva A 2013 Comput. Fluids 80 44Google Scholar

    [23]

    Buhmann M D 2000 Acta Numer. 9 1Google Scholar

    [24]

    Vapnik V, Golowich S, Smola A 1996 Advances in Neural Information Processing Systems Denver, USA, December 3–5, 1996 p281

  • 图 1  动网格方案示意图 (a) t = 5; (b) t = 10

    Fig. 1.  Schematic diagram of dynamic grid scheme: (a) t = 5; (b) t = 10.

    图 2  D2Q9模型离散速度分布图

    Fig. 2.  Discrete velocity distribution of D2Q9 model.

    图 3  (a) 计算平面; (b) 物理平面

    Fig. 3.  (a) Calculation plane; (b) physical plane.

    图 4  凝固收缩示意图, 其中I为未凝固区域, II为新近凝固的区域, III为已凝固区域

    Fig. 4.  Schematic diagram of solidification shrinkage, where I is unsolidified area, II is newly solidified area, III is sofidified area.

    图 5  凝固收缩过程中质点位移示意图

    Fig. 5.  Schematic diagram of mass displacement during solidification and shrinkage.

    图 6  RBF神经网络示意图

    Fig. 6.  Schematic diagram of RBF neural network.

    图 7  铸件物理模型

    Fig. 7.  Physical model of castings.

    图 8  (a) t = 25时固相率分布; (b) t = 25时温度分布; (c) t = 50时固相率分布; (d) t = 50时温度分布; (e) t = 75时固相率分布; (f) t = 75时温度分布; (g) t = 100时固相率分布; (h) t = 100时温度分布; (i) t = 125时固相率分布; (j) t = 125时温度分布

    Fig. 8.  (a) Distribution of solid phase rate when t = 25; (b)distribution of temperature when t = 25; (c) distribution of solid phase rate when t = 50; (d) distribution of temperature when t = 50; (e) distribution of solid phase rate when t = 75; (f) distribution of temperature when t = 75; (g) distribution of solid phase rate when t = 100; (h) distribution of temperature when t = 100; (i) distribution of solid phase rate when t = 125; (j) distribution of temperature when t = 125.

    图 9  (a) 图8(a)左上角局部放大图; (b) 图8(a)左下角局部放大图

    Fig. 9.  (a) Localized enlargement of the upper left corner in Fig. 8 (a); (b) localized enlargement of the lower left corner in Fig. 8 (a).

    图 10  图8(e)左下角局部放大图

    Fig. 10.  Localized enlargement of the lower left corner in Fig. 8 (e).

    图 11  浇注试样形状尺寸及浇注结果 (a)试样; (b)浇注结果

    Fig. 11.  Shape and size of casting specimen and casting result: (a) Casting specimen; (b) casting result.

    图 12  计算结果与实验结果对比 (a) RBF算法; (b) SVM算法

    Fig. 12.  Comparison of calculated and experimental results: (a) RBF; (b) SVM

    表 1  Al-0.5%Cu合金热物性参数

    Table 1.  Physical properties of Al-0.5%Cu alloy.

    热物性参数 符号 取值
    熔点 Tm/K 733.3
    液相线温度 TL/K 717
    固相线温度 TS/K 621
    液相线斜率 mL/(m·K/%) –3.44
    热扩散率 α/(m2·s–1) 2.7×10–7
    流体黏度 ν/(m2·s–1) 1.2×10–6
    溶质扩散系数 D/(m2·s–1) 3.0×10–9
    平衡分配系数 k 0.145
    液相密度 ρ/(kg·m–3) 2606
    各项异性系数 ε 0.0467
    Gibbs-Thomson系数 Γ/(m·K) 2.4×10–7
    下载: 导出CSV
  • [1]

    赵健, 张毅 1985 铸造 5 1

    Zhao J, Zhang Y 1985 Foundry 5 1

    [2]

    俞占扬, 张慧, 王明林, 王学兵, 张开发, 王飞 2023 特种铸造及有色合金 41 1073

    Yu Z Y, Zhang H, Wang M L, Wang X B, Zhang K F, Wang F 2023 Special Casting & Nonferrous Alloys 41 1073

    [3]

    Piwonka H, Flemings M C 1966 Metallurgical Trans. 1 1431

    [4]

    Niyama H 1960 Tran. Jpn. I. Met. 2 57

    [5]

    贾宝仟, 柳百成 1996 热加工工艺 2 34

    Jia B Q, Liu B C 1996 Hot Working Technol. 2 34

    [6]

    Stefanescu D M, Wang T 1992 Int. J. Heat Mass Tran. 35 1125Google Scholar

    [7]

    Carlson K D, Beckermann C 2009 Metall. Mater. Trans. A 40 163Google Scholar

    [8]

    Lee C Y 1998 Metallurgical and Materials Transactions A 29 3255

    [9]

    Khalajzadeh V, Carlson K D, Backman D G, Beckermann C 2017 Metall. Mater. Trans. A 48 1797Google Scholar

    [10]

    Li K, Yin J, Lu Z, Kong X, Zhang R, Liu W Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) Tsukuba, Japan, November 11–15, 2012 p170

    [11]

    Guo Z L, Shi B C, Wang N C 2000 J. Comp. Phys. 165 288

    [12]

    Rendall T C, Allen C B 2009 J. Comput. Phys. 228 6231Google Scholar

    [13]

    Beckert A, Wendland H 2001 Aerosp. Sci. Technol. 5 125Google Scholar

    [14]

    董士虎, 张红伟, 吕文朋, 雷洪, 王强 2024 金属学报 60 388

    Dong S H, Zhang H W, Lv W P, Lei H, Wang Q 2024 Acta Metall. Sin. 60 388

    [15]

    杨朝蓉, 孙东科, 潘诗琰, 戴挺, 朱鸣芳 2009 金属学报 45 43

    Yang C R, Sun D K, Pan S Y, Dai T, Zhu M F 2009 Acta Metall. Sin. 45 43

    [16]

    杨莹莹, 李日, 周靖超, 赵朝阳 2016 工程热物理学报 37 2613

    Yang Y Y, Li R, Zhou J C, Zhao C Y 2016 J. Eng. Thermophys 37 2613

    [17]

    周靖超 2017 硕士学位论文(天津: 河北工业大学)

    Zhou J C 2017 M. S. Thesis (Tianjin: Hebei University of Technology

    [18]

    连庆庆 2017 硕士学位论文(天津: 河北工业大学)

    Lian Q Q 2017 M. S. Thesis (Tianjin: Hebei University of Technology

    [19]

    刘林 2018 硕士学位论文(天津: 河北工业大学)

    Liu L 2018 M. S. Thesis (Tianjin: Hebei University of Technology

    [20]

    马旺 2020 硕士学位论文(天津: 河北工业大学)

    Ma W 2020 M. S. Thesis (Tianjin: Hebei University of Technology

    [21]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288Google Scholar

    [22]

    Estruch O, Lehmkuhl O, Borrell R, Segarra C P, Oliva A 2013 Comput. Fluids 80 44Google Scholar

    [23]

    Buhmann M D 2000 Acta Numer. 9 1Google Scholar

    [24]

    Vapnik V, Golowich S, Smola A 1996 Advances in Neural Information Processing Systems Denver, USA, December 3–5, 1996 p281

  • [1] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] 张士杰, 王颖明, 王琦, 李晨宇, 李日. 基于元胞自动机-格子玻尔兹曼模型的枝晶碰撞行为模拟. 物理学报, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [3] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型. 物理学报, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [4] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [5] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型. 物理学报, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [6] 岳昊, 邵春福, 姚智胜. 基于元胞自动机的行人疏散流仿真研究. 物理学报, 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [7] 康瑞, 彭莉娟, 杨凯. 考虑驾驶方式改变的一维元胞自动机交通流模型. 物理学报, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [8] 田欢欢, 薛郁, 康三军, 梁玉娟. 元胞自动机混合交通流模型的能耗研究. 物理学报, 2009, 58(7): 4506-4513. doi: 10.7498/aps.58.4506
    [9] 宋玉蓉, 蒋国平. 基于一维元胞自动机的复杂网络恶意软件传播研究. 物理学报, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [10] 梅超群, 黄海军, 唐铁桥. 城市快速路系统的元胞自动机模型与分析. 物理学报, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [11] 彭莉娟, 康瑞. 考虑驾驶员特性的一维元胞自动机交通流模型. 物理学报, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [12] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [13] 李庆定, 董力耘, 戴世强. 公交车停靠诱发交通瓶颈的元胞自动机模拟. 物理学报, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [14] 梅超群, 黄海军, 唐铁桥. 高速公路入匝控制的一个元胞自动机模型. 物理学报, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [15] 岳 昊, 邵春福, 陈晓明, 郝合瑞. 基于元胞自动机的对向行人交通流仿真研究. 物理学报, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [16] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] 郭四玲, 韦艳芳, 薛 郁. 元胞自动机交通流模型的相变特性研究. 物理学报, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [18] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究. 物理学报, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型. 物理学报, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
计量
  • 文章访问数:  367
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2024-11-29
  • 上网日期:  2024-12-03

/

返回文章
返回