-
本文介绍了一种由超导带材机械冷剥离薄膜制备共面波导柔性传输线的工艺方法。剥离加工后的YBCO薄膜超导转变温度宽度为0.79 K,相较于原带材的转变宽度增加了0.3 K,在77 K、0 T下临界电流密度为7.7×105A/cm2,具有带材75%以上的临界电流密度。将剥离的YBCO薄膜制成长12 cm、宽1 cm PI-YBCO-PI三层结构的传输线,测得40 K-4.2 K的漏热值为0.238 mW。在1 cm宽的YBCO薄膜上制备5条信号通道,仿真得相邻信号通道间的串扰<-40 dB,每条通道在9 GHz处的插损<-2 dB,每条信号通道的漏热值为47.6μW。Low temperature interconnect technology, especially RF signal transmission in the 40 K-4.2 K temperature range, is currently a key focus of development. The transmission line needs to have as little insertion loss and heat leakage as possible in this temperature range. We introduce a process method for preparing coplanar waveguide flexible transmission lines by mechanically cold exfoliating superconducting tape thin films. Especially YBCO thin films deposited through MOD are more easily exfoliate directly at room temperature.The superconducting transition width of YBCO thin film after exfoliating processing is 0.79 K. Although it has increased by 0.3 K compared to the transition width of the strip, the critical current density at 77 K and 0 T is 7.7×105 A/cm2, which is more than 75% of the critical current density of the strip.The exfoliated YBCO thin film is fabricated into a 12 cm long and 1 cm wide PI-YBCO-PI three-layer structure transmission line, and the heat leak value is measured to be 0.238 mW in the temperature range of 40 K to 4.2 K. Five signal channels are prepared on a 1 cm wide YBCO thin film, and the simulation shows that the crosstalk between adjacent signal channels is <-40 dB, the insertion loss at 9 GHz is <-2 dB, and the heat leak value of each signal channel is 47.6 μW. Compared to the metal transmission lines currently used in this temperature range, the heat leakage has been reduced by at least 5 times.
-
[1] Holmes D S, Ripple A L, Manheimer M A 2013IEEE Trans. Appl. Supercond. 23 1701610
[2] Yuan P S, Yu H Q, Wang S N, Wang Y L, Li L Y, You L X 2020Low. Temp. Phys. Lett. 42 117(in Chinese) [原蒲升,余慧勤,汪书娜,王永良,李凌云,尤立星2020低温物理学报42 117]
[3] Zhang T Z, Huang J, Zhang X Y, Ding C M, Yu H Q, You X, Lv C L, Liu X Y, Wang Z, You L X, Xie X M, Li H 2024Photonics Res. 12 1328
[4] COAD Y S 2022US Patent 0237491
[5] Gupta D, Sarwana S, Kirichenko D, Dotsenko V, Lehmann A E, Filippov T V, Chang S W, Ravindran P, Bardin J 2021IEEE Trans. Appl. Supercond. 29 130328
[6] Duan S Y, Wu J B, Fan K B, Zhang G H, Jin B B, Chen J, Wu P H 2022Journal of Functional Materials and Devices. 7 18(in Chinese) [段思宇,吴敬波,范克彬,张彩虹,金飚兵,陈健,吴培亨2022功能材料与器件学报7 18]
[7] Smith J P, Mazin B A, Walter A B, Daal M, Bailey I I, Bockstiegel C, Zobrist N, Swimmer N, Steiger S, Fruitwala N 2021IEEE Trans. Appl. Supercond. 31 1
[8] Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018Nature. 558 264
[9] Li L M, He L, Wu X, Niu X K, Wan C, Lin K, Jia X Q, Zhang L B, Zhao Q Y, Tu X C 2021FITEE. 22 1666
[10] Krinner S, Storz S, Kurpiers P, Magnard P, Heinsoo J, Keller R, Luetolf J, Eichler C, Wallraff A 2018EPJ Quantum Technol. 6 2
[11] Wang S N, Yu H Q, Yuan P S, Wang Y L, Li L Y, You L X 2020Cryo.&Supercond. 50 85(in Chinese) [汪书娜,余慧勤,原蒲升,王永良,李凌云,尤立星2020低温与超导50 85]
[12] Yu X, Zhang Y H, Bin F, Lu Q L, Wang S W 2022Journal of Functional Materials and Devices. 1 6(in Chinese) [禹潇,张亚辉,宾峰,陆勤龙,王生旺2022功能材料与器件学报1 6]
[13] Solovyov V, Farrell P 2017Supercond. Sci. Technol. 30 014006
[14] Solovyov V, Rabbani S, Ma M, Mendleson Z, Haugan T, Farrell P 2019Supercond. Sci. Technol. 32 054006
[15] Solovyov V, Saria O, Mendleson Z, Drozdow I 2021IEEE Trans. Appl. Supercond. 31 1
[16] Solovyov V, Kim H, Farrell P 2024IEEE Trans. Appl. Supercond. 34 1
[17] Bruel M 1996Phys.Res.B 108 313
[18] Toyoda M, Hou S, Huang Z H, Lnagaki M 2023Carbon Lett. 33 335
[19] Saliba M, Atanas J P, Howayek T M, Habchi R 2023Nanoscale Adv. 5 6787
[20] Solovyov V F, Develos-Bagarinao K, Li Q, Qing J, Zhou j 2010Supercond. Sci. Technol. 23 014008
[21] Wang M J 2020Ph. D. Dissertation (Chendu: Southwest Jiaotong University) (in Chinese) [王明江2020博士学位论文(成都:西南交通大学)]
[22] Pahlke P, Trommler S, Holzapfel B, Schultz L, Hühne R 2013J. Appl. Phys. 113 123907
[23] Toyota N, Inoue A, Fukase T, Masumoto T 1984J Low Temp Phys. 55 393
[24] Nakao K, Miura N, Tatsuhara K, Takeya H, Takei H 1989Phys. Rev. Lett. 63 97.
[25] Sutherland M L, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003Phys. Rev. B 67 174520
计量
- 文章访问数: 33
- PDF下载量: 1
- 被引次数: 0