-
纳米尺度下的太赫兹(THz)时域光谱与成像技术对于材料研究和器件检测等至关重要. 然而, 受限于THz波波长衍射极限的限制, 传统的远场THz时域光谱与成像技术无法提供飞秒时间尺度和纳米空间分辨的载流子浓度分布和超快动力学过程研究. 本文介绍了基于超快THz时域光谱成像技术与扫描探针技术耦合的超快THz散射型扫描近场光学显微镜系统. 利用针尖与样品表面的近场相互作用, 该近场系统已被证实可以以~60 nm横向空间分辨率的静态THz光谱实现半导体材料和器件研究, 进而获得半导体材料和器件的静态THz电导率分布情况, 而且还可以通过光激发瞬态载流子的方式, 获得半导体材料的瞬态电导率和激光THz发射超快动力学过程, 为研究材料和器件在纳米空间分辨, 超快时间分辨和THz谱学成像方面的性能提供了有力支持.Terahertz (THz) time-domain spectroscopy and imaging techniques on a nanoscale are crucial for material research, device detection, and others. However, traditional far-field THz time-domain spectroscopy faces inherent diffraction limitations, which limits the applications of carrier dynamics analysis that require femtosecond time resolution and nanoscale spatial precision. We present a scattering-type scanning near-field optical microscopy that overcomes these limitations by combining ultrafast THz time-domain spectroscopy with atomic force microscopy (AFM). The utilization of the near-field interaction between the needle tip and the sample surface is demonstrated to facilitate the study of semiconductor materials and devices by using static THz spectroscopy with a lateral spatial resolution of ~60 nm. This, in turn, enables the acquisition of static THz conductivity distributions of the semiconductor materials. Additionally, it facilitates the acquisition of transient conductivity distributions of semiconductor materials and laser THz emission ultrafast via photoexcited transient carrier kinetic processes, which provides substantial support for studying the performances of materials and devices in nanometer spatial resolution, ultrafast time resolution, and THz spectroscopic imaging. The experimental results show that the system has a signal-to-noise ratio as high as 56.34 dB in the static THz time-domain spectral mode, and can effectively extract the fifth-order harmonic signals covering the 0.2–2.2 THz frequency band with a spatial resolution of up to ~60 nm. Carrier excitation and complexation processes in topological insulators are successfully observed by optical pump-THz probe with a time resolution better than 100 fs. Imaging of SRAM samples by the system reveals differences in THz scattering intensity due to non-uniformity in doping concentration, thereby validating its potential application in nanoscale defect detection. This study not only provides an innovative means for studying the nanoscale electrical characterization of semiconductor materials and devices, but also opens a new way for applying the THz technology to interdisciplinary subjects such as nanophotonics and spintronics. In the future, by integrating the superlens technology, optimizing the probe design, and introducing deep learning algorithms, it is expected to further improve the temporal- and spatial-resolution and detection efficiency of the system.
-
Keywords:
- terahertz electromagnetic wave /
- scanning near-field optical microscope /
- semiconductor materials /
- devices
-
图 1 超快THz s-SNOM系统示意图, laser为光纤飞秒激光器, SHG为二次谐波转化器, HWP为半波片, OI为光隔离器, M1—M14为光学反射镜, BE为扩束器, S1为分束器, AT为发射光导天线, OAP为离轴抛物面镜, AR为接收光导天线, L1和L2为镜头
Fig. 1. Schematic diagram of the ultrafast THz s-SNOM system. Laser represents the fiber femtosecond laser, SHG represents second harmonic trigger, HWP represents half-wave plate, OI represents optical isolator, M1—M14 represent mirror, BE represents beam spreader, S1 represents semi transparent and semi reflective mirror, AT represents transmitter antenna, OAP represents off-axis parabolic mirror, AR represents receiver antenna, L1 and L2 represent lenses.
图 5 样品SRAM的THz散射强度映射及拓扑绝缘体的光泵浦-THz探测响应 (a) THz散射时域波形; (b)同一区域的THz散射强度图; (c)拓扑绝缘体的光泵浦-THz探测时域波形; (d)拓扑绝缘体光激发前THz散射强度图; (e)拓扑绝缘体光激发后散射强度图
Fig. 5. THz scattering intensity mapping of SRAM and optical pump-THz probe response of topological insulator: (a) THz scattering time-domain waveforms; (b) THz scattering intensity map of the same region; (c) optical pump-THz probe time-domain waveforms of topological insulator; (d) topological insulator morphology before photoexcitation; (e) topological insulator morphology after photoexcitation.
图 6 InAs样品THz发射信号 (a)二阶时域波形; (b)二阶频域波形; (c)高阶时域波形; (d)静态THz时域光谱散射扫描成像图; (e) AFM高度形貌
Fig. 6. THz emission signals of the InAs sample: (a) Second-order time-domain waveform; (b) second-order frequency-domain waveform; (c) higher-order time-domain waveforms; (d) static THz time-domain spectral scattering scanning imaging; (e) AFM height topography of the sample.
-
[1] 陈西良, 马明旺, 杨小敏, 杨康, 吉特, 吴胜伟, 朱智勇 2008 物理化学学报 24 1969
Google Scholar
Chen X L, Ma M W, Yang X M, Yang K, Ji T, Wu S W, Zhu Z Y 2008 Acta Phys. -Chem. Sin. 24 1969
Google Scholar
[2] Cocker T L, Jelic V, Hillenbrand R, Hegmann F 2021 Nat. Photon. 15 558
Google Scholar
[3] Jepsen P U, Cooke D G, Koch M 2011 Laser Photon. Rev. 5 124
Google Scholar
[4] Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543
Google Scholar
[5] Kampfrath T, Tanaka K, Nelson, K A 2013 Nat. Photon. 7 680
Google Scholar
[6] Lloyd-Hughes J 2005 Phys. Rev. B 71 195301
Google Scholar
[7] Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764
Google Scholar
[8] Xing X, Zhao L T, Zhang Z Y, Liu X K, Zhang K L, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z M, Xu J H, Ma G H 2017 J. Phys. Chem. C 121 20451
Google Scholar
[9] Knoll B, Keilmann F, Kramer A, Guckenberger R 1997 Appl. Phys. Lett. 70 2667
Google Scholar
[10] Lahrech A, Bachelot R, Gleyzes P, Boccara A C 1996 Opt. Lett. 21 1315
Google Scholar
[11] Knoll B, Keilmann F 1999 Nature 399 134
Google Scholar
[12] van der Valk N C J, Planken P C M 2002 Appl. Phys. Lett. 81 1558
Google Scholar
[13] Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009
Google Scholar
[14] Buersgens F, Kersting R, Chen H T 2006 Appl. Phys. Lett. 88 112
[15] Chen X Z, Liu X, Guo X D, Chen S, Hu H, Nikulina E, Ye X L, Yao Z H, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S L, Hu Q, Zhu Y M, Hillenbrand R, Liu M K, You G J 2020 ACS Photonics 7 687
Google Scholar
[16] Plankl M, Faria P E Jr, Mooshammer F, Siday T, Zizlsperger M, Sandner F, Schiegl F, Maier S, Huber M A, Gmitra M, Fabian J, Boland J L, Cocker T L, Huber R 2021 Nat. Photon. 15 594
Google Scholar
[17] Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel Escudero C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Chuvilin A, Xiu F X, Hillenbrand R 2023 Nat. Mater. 22 860
Google Scholar
[18] Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, de los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013 Nat. Photon. 7 620
Google Scholar
[19] Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014 Nat. Photon. 8 841
Google Scholar
[20] Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947
Google Scholar
[21] 金钻明, 郭颖钰, 季秉煜, 李章顺, 马国宏, 曹世勋, 彭滟, 朱亦鸣, 庄松林 2022 光子学报 51 0751410
Google Scholar
Jin Z M, Guo Y Y, Li B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022 Acta Photon. Sin. 51 0751410
Google Scholar
[22] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483
Google Scholar
[23] Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Adv. Opt. Mater. 7 1900487
Google Scholar
[24] Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019 Appl. Phys. Lett. 115 121104
Google Scholar
[25] Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021 Adv. Photonics Res. 2 2000099
Google Scholar
[26] Liu S J, Guo F W, Li P Y, Wei G S, Wang C, Chen X H, Wang B, Zhao W S, Miao J G, Wang L, Xu Y, Wu X J 2022 Adv. Mater. Interfaces 9 2101296
Google Scholar
[27] Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M, Wu X J 2022 Adv. Mater. 34 2106172
Google Scholar
[28] Liu S J, Lu C H, Fan Z Q, Wang S X, Li P Y, Chen X H, Pan J, Xu Y, Liu Y, Wu X J 2022 Appl. Phys. Lett. 120 172404
Google Scholar
[29] Li P Y, Liu S J, Liu Z, Li M, Xu H, Xu Y, Zeng H P, Wu X J 2022 Appl. Phys. Lett. 120 201102
Google Scholar
[30] Klarskov P, Kim H, Colvin V L, . Mittleman D M 2017 ACS Photonics 4 2676
Google Scholar
[31] Pizzuto A, Ma P C, Mittleman D M 2023 Light Sci. Appl. 12 96
Google Scholar
[32] Hillenbrand R, Abate Y, Liu M, Chen X, Basov D N 2025 Nat. Rev. Mater. 10 285
Google Scholar
[33] von Ribbeck H G, Brehm M, van der Weide D W, Winnerl S, Drachenko O, Helm M, Keilmann F 2008 Opt. Express 16 3430
Google Scholar
[34] Siday T, Hale L L, Hermans R I, Mitrofanov O 2020 ACS Photonics 7 596
Google Scholar
[35] Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526
Google Scholar
[36] Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019 ACS Photonics 6 1279
Google Scholar
[37] Moon Y, Lee H, Lim J, Lee G, Kim J, Han H 2023 AIP Adv. 13 065211
Google Scholar
[38] Pistore V, Schiattarella C, Viti L, Siday T, Johnston M B, Mitrofanov O, Vitiello M S 2024 Appl. Phys. Lett. 124 221105
Google Scholar
[39] Cai J H, Dai M C, Chen S, Chen P, Wang J Q, Xiong H T, Ren Z J, Liu S J, Liu Z K, Wan C H, Bai M, Wu X J 2023 Appl. Phys. Rev. 10 041414
Google Scholar
[40] Huang Z Y, Li J, Li P Y, Du L, Dai M C, Cai J H, Ren Z J, Nie T X, Wu X J 2025 iScience 28 111840
Google Scholar
[41] Tanaka S, More S D, Murakami J, Itoh M, Fujii Y, Kamada M 2001 Phys. Rev. B 64 155308
Google Scholar
[42] Maeda N, Hata H, Osada N, Shen Q, Toyoda T, Kuwahara S, Katayama K 2013 Phys. Chem. Chem. Phys. 15 11006
Google Scholar
[43] Shingai D, Ide Y, Sohn W Y, Katayama K 2018 Phys. Chem. Chem. Phys. 20 3484
Google Scholar
[44] Astratov V N, Sahel Y B, Eldar Y C, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao Y-T, Hsieh C-L, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked N T, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng J-X, Kariman B S, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang G-J, Chu S-W, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen M J, Stanciu S G, Smolyaninova V N, Smolyaninov I I, Leonhardt U, Sahebdivan S, Wang Z, Luk'yanchuk B, Wu L, Maslov A V, Jin B, Simovski C R, Perrin S, Montgomery P, Lecler S 2023 Laser & Photonics Rev. 17 2200029
[45] Huang S Y, Wang C, Xie Y G, Yu B Y, Yan H G 2023 Photonics Insights 2 R03
Google Scholar
[46] 陶伟灏, 赵书浩, 董涵瑾, 张国锋, 杨树明 2024 计量科学与技术 68 76
Google Scholar
Tao W H, Zhao S H, Dong H J, Zhang G F, Yang S M 2024 Metro. Sci. Technol. 68 76
Google Scholar
[47] Park Y, Depeursinge C, Popescu G 2018 Nat. Photon. 12 578
Google Scholar
[48] Paturzo M, Merola F, Grilli S, Nicola S D, Finizio A, Ferraro P 2008 Opt. Express 16 17107
Google Scholar
[49] Jiaji L, Alex C M, Yunzhe L, Qian C, Chao Z, Lei T 2019 Adv. Photon. 1 066004
[50] Lü X, Röben B, Biermann K, Wubs J R, Macherius U, Weltmann K D, van Helden J H, Schrottke L, Grahn H T 2023 Semicond. Sci. Technol. 38 035003
Google Scholar
[51] Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D: Appl. Phys. 47 374008
Google Scholar
[52] Hübers H W, Eichholz R, Pavlov S G, Richter H 2013 J. Infrared Milli. Terahz. Waves 34 325
Google Scholar
计量
- 文章访问数: 285
- PDF下载量: 7
- 被引次数: 0