搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快太赫兹散射型扫描近场光学显微镜

王有为 马一航 王嘉毅 汪子权 饶馨予 代明聪 黄滋宇 吴晓君

引用本文:
Citation:

超快太赫兹散射型扫描近场光学显微镜

王有为, 马一航, 王嘉毅, 汪子权, 饶馨予, 代明聪, 黄滋宇, 吴晓君

Ultrafast terahertz scattering scanning near-field optical microscope

WANG Youwei, MA Yihang, WANG Jiayi, WANG Ziquan, RAO Xinyu, DAI Mingcong, HUANG Ziyu, WU Xiaojun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 纳米尺度下的太赫兹(THz)时域光谱与成像技术对于材料研究和器件检测等至关重要. 然而, 受限于THz波波长衍射极限的限制, 传统的远场THz时域光谱与成像技术无法提供飞秒时间尺度和纳米空间分辨的载流子浓度分布和超快动力学过程研究. 本文介绍了基于超快THz时域光谱成像技术与扫描探针技术耦合的超快THz散射型扫描近场光学显微镜系统. 利用针尖与样品表面的近场相互作用, 该近场系统已被证实可以以~60 nm横向空间分辨率的静态THz光谱实现半导体材料和器件研究, 进而获得半导体材料和器件的静态THz电导率分布情况, 而且还可以通过光激发瞬态载流子的方式, 获得半导体材料的瞬态电导率和激光THz发射超快动力学过程, 为研究材料和器件在纳米空间分辨, 超快时间分辨和THz谱学成像方面的性能提供了有力支持.
    Terahertz (THz) time-domain spectroscopy and imaging techniques on a nanoscale are crucial for material research, device detection, and others. However, traditional far-field THz time-domain spectroscopy faces inherent diffraction limitations, which limits the applications of carrier dynamics analysis that require femtosecond time resolution and nanoscale spatial precision. We present a scattering-type scanning near-field optical microscopy that overcomes these limitations by combining ultrafast THz time-domain spectroscopy with atomic force microscopy (AFM). The utilization of the near-field interaction between the needle tip and the sample surface is demonstrated to facilitate the study of semiconductor materials and devices by using static THz spectroscopy with a lateral spatial resolution of ~60 nm. This, in turn, enables the acquisition of static THz conductivity distributions of the semiconductor materials. Additionally, it facilitates the acquisition of transient conductivity distributions of semiconductor materials and laser THz emission ultrafast via photoexcited transient carrier kinetic processes, which provides substantial support for studying the performances of materials and devices in nanometer spatial resolution, ultrafast time resolution, and THz spectroscopic imaging. The experimental results show that the system has a signal-to-noise ratio as high as 56.34 dB in the static THz time-domain spectral mode, and can effectively extract the fifth-order harmonic signals covering the 0.2–2.2 THz frequency band with a spatial resolution of up to ~60 nm. Carrier excitation and complexation processes in topological insulators are successfully observed by optical pump-THz probe with a time resolution better than 100 fs. Imaging of SRAM samples by the system reveals differences in THz scattering intensity due to non-uniformity in doping concentration, thereby validating its potential application in nanoscale defect detection. This study not only provides an innovative means for studying the nanoscale electrical characterization of semiconductor materials and devices, but also opens a new way for applying the THz technology to interdisciplinary subjects such as nanophotonics and spintronics. In the future, by integrating the superlens technology, optimizing the probe design, and introducing deep learning algorithms, it is expected to further improve the temporal- and spatial-resolution and detection efficiency of the system.
  • 图 1  超快THz s-SNOM系统示意图, laser为光纤飞秒激光器, SHG为二次谐波转化器, HWP为半波片, OI为光隔离器, M1—M14为光学反射镜, BE为扩束器, S1为分束器, AT为发射光导天线, OAP为离轴抛物面镜, AR为接收光导天线, L1和L2为镜头

    Fig. 1.  Schematic diagram of the ultrafast THz s-SNOM system. Laser represents the fiber femtosecond laser, SHG represents second harmonic trigger, HWP represents half-wave plate, OI represents optical isolator, M1—M14 represent mirror, BE represents beam spreader, S1 represents semi transparent and semi reflective mirror, AT represents transmitter antenna, OAP represents off-axis parabolic mirror, AR represents receiver antenna, L1 and L2 represent lenses.

    图 2  SNOM针尖原理示意图

    Fig. 2.  Schematic diagram operational principle of the SNOM tip.

    图 3  SRAM样品的高度信息 (a)表面光学照片; (b)样品的三维立体图像; (c) AFM高度形貌

    Fig. 3.  Height information of SRAM sample: (a) Optical photographs of the surface taken with the cantilever; (b) three-dimensional images of the sample; (c) AFM height topography of the sample.

    图 4  静态THz时域光谱扫描模式示意图 (a)时域波形; (b)频域波形; (c)不同阶数信号峰峰值

    Fig. 4.  Static THz time-domain spectroscopy scanning pattern mapping: (a) Time-domain waveforms; (b) frequency-domain waveforms; (c) peak value of signals at different orders.

    图 5  样品SRAM的THz散射强度映射及拓扑绝缘体的光泵浦-THz探测响应 (a) THz散射时域波形; (b)同一区域的THz散射强度图; (c)拓扑绝缘体的光泵浦-THz探测时域波形; (d)拓扑绝缘体光激发前THz散射强度图; (e)拓扑绝缘体光激发后散射强度图

    Fig. 5.  THz scattering intensity mapping of SRAM and optical pump-THz probe response of topological insulator: (a) THz scattering time-domain waveforms; (b) THz scattering intensity map of the same region; (c) optical pump-THz probe time-domain waveforms of topological insulator; (d) topological insulator morphology before photoexcitation; (e) topological insulator morphology after photoexcitation.

    图 6  InAs样品THz发射信号 (a)二阶时域波形; (b)二阶频域波形; (c)高阶时域波形; (d)静态THz时域光谱散射扫描成像图; (e) AFM高度形貌

    Fig. 6.  THz emission signals of the InAs sample: (a) Second-order time-domain waveform; (b) second-order frequency-domain waveform; (c) higher-order time-domain waveforms; (d) static THz time-domain spectral scattering scanning imaging; (e) AFM height topography of the sample.

  • [1]

    陈西良, 马明旺, 杨小敏, 杨康, 吉特, 吴胜伟, 朱智勇 2008 物理化学学报 24 1969Google Scholar

    Chen X L, Ma M W, Yang X M, Yang K, Ji T, Wu S W, Zhu Z Y 2008 Acta Phys. -Chem. Sin. 24 1969Google Scholar

    [2]

    Cocker T L, Jelic V, Hillenbrand R, Hegmann F 2021 Nat. Photon. 15 558Google Scholar

    [3]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photon. Rev. 5 124Google Scholar

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543Google Scholar

    [5]

    Kampfrath T, Tanaka K, Nelson, K A 2013 Nat. Photon. 7 680Google Scholar

    [6]

    Lloyd-Hughes J 2005 Phys. Rev. B 71 195301Google Scholar

    [7]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764Google Scholar

    [8]

    Xing X, Zhao L T, Zhang Z Y, Liu X K, Zhang K L, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z M, Xu J H, Ma G H 2017 J. Phys. Chem. C 121 20451Google Scholar

    [9]

    Knoll B, Keilmann F, Kramer A, Guckenberger R 1997 Appl. Phys. Lett. 70 2667Google Scholar

    [10]

    Lahrech A, Bachelot R, Gleyzes P, Boccara A C 1996 Opt. Lett. 21 1315Google Scholar

    [11]

    Knoll B, Keilmann F 1999 Nature 399 134Google Scholar

    [12]

    van der Valk N C J, Planken P C M 2002 Appl. Phys. Lett. 81 1558Google Scholar

    [13]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar

    [14]

    Buersgens F, Kersting R, Chen H T 2006 Appl. Phys. Lett. 88 112

    [15]

    Chen X Z, Liu X, Guo X D, Chen S, Hu H, Nikulina E, Ye X L, Yao Z H, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S L, Hu Q, Zhu Y M, Hillenbrand R, Liu M K, You G J 2020 ACS Photonics 7 687Google Scholar

    [16]

    Plankl M, Faria P E Jr, Mooshammer F, Siday T, Zizlsperger M, Sandner F, Schiegl F, Maier S, Huber M A, Gmitra M, Fabian J, Boland J L, Cocker T L, Huber R 2021 Nat. Photon. 15 594Google Scholar

    [17]

    Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel Escudero C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Chuvilin A, Xiu F X, Hillenbrand R 2023 Nat. Mater. 22 860Google Scholar

    [18]

    Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, de los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013 Nat. Photon. 7 620Google Scholar

    [19]

    Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014 Nat. Photon. 8 841Google Scholar

    [20]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947Google Scholar

    [21]

    金钻明, 郭颖钰, 季秉煜, 李章顺, 马国宏, 曹世勋, 彭滟, 朱亦鸣, 庄松林 2022 光子学报 51 0751410Google Scholar

    Jin Z M, Guo Y Y, Li B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022 Acta Photon. Sin. 51 0751410Google Scholar

    [22]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar

    [23]

    Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [24]

    Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [25]

    Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021 Adv. Photonics Res. 2 2000099Google Scholar

    [26]

    Liu S J, Guo F W, Li P Y, Wei G S, Wang C, Chen X H, Wang B, Zhao W S, Miao J G, Wang L, Xu Y, Wu X J 2022 Adv. Mater. Interfaces 9 2101296Google Scholar

    [27]

    Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M, Wu X J 2022 Adv. Mater. 34 2106172Google Scholar

    [28]

    Liu S J, Lu C H, Fan Z Q, Wang S X, Li P Y, Chen X H, Pan J, Xu Y, Liu Y, Wu X J 2022 Appl. Phys. Lett. 120 172404Google Scholar

    [29]

    Li P Y, Liu S J, Liu Z, Li M, Xu H, Xu Y, Zeng H P, Wu X J 2022 Appl. Phys. Lett. 120 201102Google Scholar

    [30]

    Klarskov P, Kim H, Colvin V L, . Mittleman D M 2017 ACS Photonics 4 2676Google Scholar

    [31]

    Pizzuto A, Ma P C, Mittleman D M 2023 Light Sci. Appl. 12 96Google Scholar

    [32]

    Hillenbrand R, Abate Y, Liu M, Chen X, Basov D N 2025 Nat. Rev. Mater. 10 285Google Scholar

    [33]

    von Ribbeck H G, Brehm M, van der Weide D W, Winnerl S, Drachenko O, Helm M, Keilmann F 2008 Opt. Express 16 3430Google Scholar

    [34]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020 ACS Photonics 7 596Google Scholar

    [35]

    Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [36]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019 ACS Photonics 6 1279Google Scholar

    [37]

    Moon Y, Lee H, Lim J, Lee G, Kim J, Han H 2023 AIP Adv. 13 065211Google Scholar

    [38]

    Pistore V, Schiattarella C, Viti L, Siday T, Johnston M B, Mitrofanov O, Vitiello M S 2024 Appl. Phys. Lett. 124 221105Google Scholar

    [39]

    Cai J H, Dai M C, Chen S, Chen P, Wang J Q, Xiong H T, Ren Z J, Liu S J, Liu Z K, Wan C H, Bai M, Wu X J 2023 Appl. Phys. Rev. 10 041414Google Scholar

    [40]

    Huang Z Y, Li J, Li P Y, Du L, Dai M C, Cai J H, Ren Z J, Nie T X, Wu X J 2025 iScience 28 111840Google Scholar

    [41]

    Tanaka S, More S D, Murakami J, Itoh M, Fujii Y, Kamada M 2001 Phys. Rev. B 64 155308Google Scholar

    [42]

    Maeda N, Hata H, Osada N, Shen Q, Toyoda T, Kuwahara S, Katayama K 2013 Phys. Chem. Chem. Phys. 15 11006Google Scholar

    [43]

    Shingai D, Ide Y, Sohn W Y, Katayama K 2018 Phys. Chem. Chem. Phys. 20 3484Google Scholar

    [44]

    Astratov V N, Sahel Y B, Eldar Y C, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao Y-T, Hsieh C-L, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked N T, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng J-X, Kariman B S, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang G-J, Chu S-W, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen M J, Stanciu S G, Smolyaninova V N, Smolyaninov I I, Leonhardt U, Sahebdivan S, Wang Z, Luk'yanchuk B, Wu L, Maslov A V, Jin B, Simovski C R, Perrin S, Montgomery P, Lecler S 2023 Laser & Photonics Rev. 17 2200029

    [45]

    Huang S Y, Wang C, Xie Y G, Yu B Y, Yan H G 2023 Photonics Insights 2 R03Google Scholar

    [46]

    陶伟灏, 赵书浩, 董涵瑾, 张国锋, 杨树明 2024 计量科学与技术 68 76Google Scholar

    Tao W H, Zhao S H, Dong H J, Zhang G F, Yang S M 2024 Metro. Sci. Technol. 68 76Google Scholar

    [47]

    Park Y, Depeursinge C, Popescu G 2018 Nat. Photon. 12 578Google Scholar

    [48]

    Paturzo M, Merola F, Grilli S, Nicola S D, Finizio A, Ferraro P 2008 Opt. Express 16 17107Google Scholar

    [49]

    Jiaji L, Alex C M, Yunzhe L, Qian C, Chao Z, Lei T 2019 Adv. Photon. 1 066004

    [50]

    Lü X, Röben B, Biermann K, Wubs J R, Macherius U, Weltmann K D, van Helden J H, Schrottke L, Grahn H T 2023 Semicond. Sci. Technol. 38 035003Google Scholar

    [51]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014 J. Phys. D: Appl. Phys. 47 374008Google Scholar

    [52]

    Hübers H W, Eichholz R, Pavlov S G, Richter H 2013 J. Infrared Milli. Terahz. Waves 34 325Google Scholar

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法. 物理学报, doi: 10.7498/aps.73.20240688
    [2] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, doi: 10.7498/aps.70.20201054
    [3] 程哲. 第三代半导体材料及器件中的热科学和工程问题. 物理学报, doi: 10.7498/aps.70.20211662
    [4] 张倬铖, 王月莹, 张晓秋艳, 张天宇, 许星星, 赵陶, 宫玉彬, 魏彦玉, 胡旻. 太赫兹散射式扫描近场光学显微镜中探针与样品互作用及其影响探究. 物理学报, doi: 10.7498/aps.70.20211715
    [5] 王美昌, 于斌, 张炜, 林丹樱, 屈军乐. 基于数字微镜器件的数字线扫描荧光显微成像技术. 物理学报, doi: 10.7498/aps.69.20200908
    [6] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备. 物理学报, doi: 10.7498/aps.68.20191044
    [7] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, doi: 10.7498/aps.68.20182275
    [8] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, doi: 10.7498/aps.67.20181818
    [9] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件. 物理学报, doi: 10.7498/aps.66.218101
    [10] 曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙. 正电子湮没谱学研究半导体材料微观结构的应用进展. 物理学报, doi: 10.7498/aps.66.027801
    [11] 池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东. 基于有机半导体激光材料的高灵敏度溶液检测传感器件. 物理学报, doi: 10.7498/aps.65.064202
    [12] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, doi: 10.7498/aps.64.194201
    [13] 刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君. 铜锌锡硫薄膜材料及其器件应用研究进展. 物理学报, doi: 10.7498/aps.64.068801
    [14] 代煜, 张建勋. 基于小波变换和维纳滤波的半导体器件1/f噪声滤波. 物理学报, doi: 10.7498/aps.60.110516
    [15] 王国军, 吴世法, 李旭峰, 李睿, 段建民, 潘石. 带金属尖四棱锥小孔光探针光斑近场分布数值模拟. 物理学报, doi: 10.7498/aps.59.192
    [16] 陈华, 汪力. 太赫兹波在亚波长随机金属Al颗粒中的相干传播. 物理学报, doi: 10.7498/aps.58.8271
    [17] 李 智, 张家森, 杨 景, 龚旗煌. 飞秒时间分辨近场光学系统实现及其应用. 物理学报, doi: 10.7498/aps.56.3630
    [18] 许兴胜, 熊志刚, 金爱子, 陈弘达, 张道中. 聚焦离子束研制半导体材料光子晶体. 物理学报, doi: 10.7498/aps.56.916
    [19] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数. 物理学报, doi: 10.7498/aps.52.34
    [20] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, doi: 10.7498/aps.49.1959
计量
  • 文章访问数:  285
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-04-11
  • 上网日期:  2025-05-13

/

返回文章
返回