搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扭角双层石墨烯中磁性和手性d+id超导态的量子蒙特卡洛研究

方世超 廖心怡

引用本文:
Citation:

扭角双层石墨烯中磁性和手性d+id超导态的量子蒙特卡洛研究

方世超, 廖心怡

Quantum Monte Carlo Study of Magnetism and Chiral d + id-Wave Superconducivity in Twisted Bilayer Graphene

FANG Shichao, LIAO Xinyi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为深入理解扭角双层石墨烯系统中关联态之间的关系和超导配对机理以及扭转角度对超导电性的影响,本文采用大尺度无偏差的约束路径量子蒙特卡洛方法在构建的扭角双层石墨烯有效二轨道哈伯德模型中进行了系统的数值模拟。首先,从电声子耦合的层面,数值模拟结果显示晶格间近邻吸引库仑相互作用强烈地增强系统主导的手性d+id超导电子配对对称性,并且发现布里渊区Γ点附近的反铁磁序也存在同样的增强效应,这说明反铁磁序是形成手性d+id超导态的先决条件。更为重要的是此理论结果表明电声子耦合对调控超导电性具有重要的作用。其次,从双层石墨烯扭转角度的层面,我们讨论了扭转角度对超导电性的影响,数值模拟结果表明扭转角度在1.08°附近,随着扭转角度的减小系统主导的手性d+id超导电子配对对称性以及反铁磁序同样表现出增强的协同效应。最后,本文的研究结果为进一步揭示扭角双层石墨烯中的超导机理和提高系统的超导临界转变温度提供了重要的研究方向。
    To gain deeper insight into the relationship between correlated states and the superconducting pairing mechanism in twisted bilayer graphene, as well as the influence of the twist angle on superconductivity, we employ a large-scale, unbiased constrained-path quantum Monte Carlo method to systematically simulate the effective two-orbital Hubbard model for twisted bilayer graphene. Initially, we investigate the modulation of superconductivity by nearest-neighbor attractive Coulomb interactions, demonstrating that electron-phonon coupling plays a significant role in the system. Our numerical results reveal that the superconducting state is dominated by chiral NNd + id superconducting electron pairing symmetry, and that such nearest-neighbor attractive Coulomb interactions significantly enhance the effective long-range pairing correlation function of chiral NNd + id wave. From this perspective, it is evident that electronphonon coupling positively contributes to the superconductivity of the system.
    Subsequently, we explore how the twist angle affects the superconducting state. The flat-band structure conducted by hopping anisotropy reflects the different twist angles of the system. Our results show that as the twist angle deviates downward from 1.08°, the effective pairing correlation function of the chiral NNd + id wave increases substantially. Conversely, as the twist angle exceeds 1.08°, the effective correlation function of the chiral NNd + id wave exhibits a tendency of decline. These results suggest that further reduction in the twist angle may lead to higher superconducting transition temperatures in twisted bilayer graphene system.
    Ultimately, we analyze how nearest-neighbor attractive Coulomb interactions and flat-band structures influence superconductivity from the standpoint of magnetic properties. The observed enhancement of the spin structure factor near the Γ point in the Brillouin zone indicates that enhanced antiferromagnetic correlations are essential for enhancing the superconducting transition temperature and for stabilizing chiral NNd + id wave. Through this series of investigations, our numerical findings not only contribute to a more comprehensive understanding of strongly correlated systems such as twisted bilayer graphene, but also offer guidance for identifying twist-angle systems with potentially higher superconducting transition temperatures.
  • [1]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 55643

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 55680

    [3]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600240

    [4]

    Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574653

    [5]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124076801

    [6]

    Jaoui A, Das I, Di Battista G, Díez-Mérida J, Lu X, Watanabe K, Taniguchi T, Ishizuka H, Levitov L, Efetov D K 2022 Nature Physics 18633

    [7]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367900

    [8]

    Tilak N, Lai X, Wu S, Zhang Z, Xu M, Ribeiro R d A, Canfield P C, Andrei E Y 2021 Nature Communications 124180

    [9]

    Lisi S, Lu X, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nature Physics 17189

    [10]

    Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Letters 202410

    [11]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372264

    [12]

    Hasegawa Y, Kohmoto M 2013 Phys. Rev. B 88125426

    [13]

    Liu J P, Dai X 2020 Acta Physica Sinica. 69147301.(刘健鹏,戴希2020物理学报72147301)

    [14]

    Lucignano P, Alfè D, Cataudella V, Ninno D, Cantele G 2019 Phys. Rev. B 99195419

    [15]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98045103

    [16]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98079901

    [17]

    Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8031089

    [18]

    Kennes D M, Lischner J, Karrasch C 2018 Phys. Rev. B 98241407

    [19]

    Huang T, Zhang L, Ma T 2019 Science Bulletin 64310

    [20]

    Guo H, Zhu X, Feng S, Scalettar R T 2018 Phys. Rev. B 97235453

    [21]

    Gu X, Chen C, Leaw J N, Laksono E, Pereira V M, Vignale G, Adam S 2020 Phys. Rev. B 101180506

    [22]

    Van Loon S, Sá de Melo C A R 2025 Phys. Rev. B 111064515

    [23]

    Ray S, Jung J, Das T 2019 Phys. Rev. B 99134515

    [24]

    Roy B, Juričić V 2019 Phys. Rev. B 99121407

    [25]

    Peltonen T J, Ojajärvi R, Heikkilä T T 2018 Phys. Rev. B 98220504

    [26]

    Pahlevanzadeh B, Sahebsara P, Sénéchal D 2021 SciPost Phys. 11017

    [27]

    Pangburn E, Alvarado M, Awoga O A, Pépin C, Bena C 2024 Phys. Rev. B 110184515

    [28]

    Wagner G, Kwan Y H, Bultinck N, Simon S H, Parameswaran S A 2024 Phys. Rev. B 110214517

    [29]

    Wang Y, Kang J, Fernandes R M 2021 Phys. Rev. B 103024506

    [30]

    Chen C, Nuckolls K P, Ding S, Miao W, Wong D, Oh M, Lee R L, He S, Peng C, Pei D, Li Y, Hao C, Yan H, Xiao H, Gao H, Li Q, Zhang S, Liu J, He L, Watanabe K, Taniguchi T, Jozwiak C, Bostwick A, Rotenberg E, Li C, Han X, Pan D, Liu Z, Dai X, Liu C, Bernevig B A, Wang Y, Yazdani A, Chen Y 2024 Nature 636342

    [31]

    Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122257002

    [32]

    Wu F, MacDonald A H, Martin I 2018 Phys. Rev. Lett. 121257001

    [33]

    Liu C X, Chen Y, Yazdani A, Bernevig B A 2024 Phys. Rev. B 110045133

    [34]

    Girotto N, Linhart L, Libisch F 2023 Phys. Rev. B 108155415

    [35]

    Choi Y W, Choi H J 2018 Phys. Rev. B 98241412

    [36]

    Das Sarma S, Wu F 2020 Annals of Physics 417168193

    [37]

    Gao S, Zhou J J, Luo Y, Bernardi M 2024 Phys. Rev. Mater. 8 L051001

    [38]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96075311

    [39]

    Trotter H F 1959 Proceedings of the American Mathematical Society 10545

    [40]

    Suzuki M 1976 Communications in Mathematical Physics 51183

    [41]

    Hirsch J E 1983 Phys. Rev. B 284059

    [42]

    Zhang S, Carlson J, Gubernatis J E 1997 Phys. Rev. B 557464

    [43]

    Shi H, Zhang S 2013 Phys. Rev. B 88125132

    [44]

    Shi H, Jiménez-Hoyos C A, Rodríguez-Guzmán R, Scuseria G E, Zhang S 2014 Phys. Rev. B 89125129

    [45]

    Vitali E, Shi H, Qin M, Zhang S 2016 Phys. Rev. B 94085140

    [46]

    Xu X Y, Wessel S, Meng Z Y 2016 Phys. Rev. B 94115105

    [47]

    Ying T, Wessel S 2018 Phys. Rev. B 97075127

    [48]

    Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100115135

    [49]

    Fang S C, Zheng X J, Lin H Q, Huang Z B 2020 Journal of Physics:Condensed Matter 33025601

    [50]

    Chen Z, Wang Y, Rebec S N, Jia T, Hashimoto M, Lu D, Moritz B, Moore R G, Devereaux T P, Shen Z X 2021 Science 3731235

    [51]

    Wang Y, Chen Z, Shi T, Moritz B, Shen Z X, Devereaux T P 2021 Phys. Rev. Lett. 127197003

    [52]

    Cheng K, Fang S C, Huang Z B 2024 Phys. Rev. B 109014519

    [53]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75473

    [54]

    Halboth C J, Metzner W 2000 Phys. Rev. Lett. 855162

    [55]

    Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105247001

    [56]

    Sun Z, Lin H Q 2024 Phys. Rev. B 109035107

    [57]

    Dai P 2015 Rev. Mod. Phys. 87855

    [58]

    Johnston D C 2010 Advances in Physics 59803

    [59]

    Mebratie G, Abera B, Mekuye B, Bekele T 2024 Results in Physics 57107446

    [60]

    Gong Z, Zou J, Xu G 2024 Phys. Rev. B 110085128

    [61]

    Tilak N, Lai X, Wu S, Zhang Z, Xu M, Ribeiro R d A, Canfield P C, Andrei E Y 2021 Nature communications 124180

    [62]

    Li Q, Zhang H, Wang Y, Chen W, Bao C, Liu Q, Lin T, Zhang S, Zhang H, Watanabe K, Taniguchi T, Avila J, Dudin P, Li Q, Yu P, Duan W, Song Z, Zhou S 2024 Nature Materials 231070

    [63]

    Tarnopolsky G, Kruchkov A J, Vishwanath A 2019 Phys. Rev. Lett. 122106405

    [64]

    Chou Y Z, Tan Y, Wu F, Das Sarma S 2024 Phys. Rev. B 110 L041108

    [65]

    Yu G, Wang Y, Katsnelson M I, Yuan S 2023 Phys. Rev. B 108045138

  • [1] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器. 物理学报, doi: 10.7498/aps.70.20210476
    [2] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20200644
    [3] 阴敏, 张敏, 吕瑾, 武海顺. TM@Cu12N12团簇磁性第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190737
    [4] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, doi: 10.7498/aps.68.20180957
    [5] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, doi: 10.7498/aps.66.067202
    [6] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, doi: 10.7498/aps.65.127501
    [7] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, doi: 10.7498/aps.64.147301
    [8] 万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军. 钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究. 物理学报, doi: 10.7498/aps.63.237501
    [9] 何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xEux)4/3Sr5/3Mn2O7(x=0, 0.15)的磁性和电性研究. 物理学报, doi: 10.7498/aps.63.147503
    [10] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.63.087502
    [11] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究. 物理学报, doi: 10.7498/aps.62.203101
    [12] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究. 物理学报, doi: 10.7498/aps.62.188102
    [13] 赵昆, 张坤, 王家佳, 于金, 吴三械. Heusler合金Pd2 CrAl四方变形、磁性及弹性常数的第一性原理计算. 物理学报, doi: 10.7498/aps.60.127101
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047110
    [15] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算. 物理学报, doi: 10.7498/aps.60.047502
    [16] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, doi: 10.7498/aps.60.047105
    [17] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, doi: 10.7498/aps.59.6443
    [18] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, doi: 10.7498/aps.58.2011
    [19] 马 荣, 张加宏, 杜锦丽, 刘 甦, 刘 楣. 新超导体MgCNi3的虚晶掺杂研究. 物理学报, doi: 10.7498/aps.55.6580
    [20] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.55.4816
计量
  • 文章访问数:  90
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回