-
本文通过实验系统研究了Heusler合金Co2FeAlxSi1-x (x=0, 0.25, 0.5, 0.75, 1)体系中原子占位有序度与磁致伸缩的关联机制。研究发现,Al掺杂可导致体系从高度有序的L21结构向B2无序结构转变,并在x=0.25~0.5时诱导L21/B2两相共存界面态的形成,此时有序度计算结果显示SL21/SB2=0.5~0.9。实验结果表明这种界面态的出现显著增强了饱和磁致伸缩系数并在过渡到B2结构后再次减小。该结果定量揭示了原子的局部无序占位可通过降低立方对称性、引入局域晶格畸变并改变磁畴结构从而提升磁弹耦合的物理机制。此外,本研究首次报道了12种Co基Heusler合金的磁致伸缩系数,其中Co2MnGa和Co2CrGa展现出优于其他Co基Heusler合金的潜力,填补了该体系磁致伸缩性能参数的空白,并验证了该多晶材料的线性正磁致伸缩特性。本研究提出了基于原子占位有序度调控的磁致伸缩性能优化策略,为开发耐高温、高自旋极化率的磁致伸缩材料提供了新方向。
-
关键词:
- Co基Heusler合金 /
- 有序度 /
- 结构相变 /
- 磁致伸缩
Co-based Heusler alloys have emerged as highly promising systems within the Heusler alloy family due to their high Curie temperatures and potential half-metallicity. Since the concept of half-metallic ferromagnets was proposed, these alloys have attracted significant attention for their high spin polarization, excellent magnetic performance, and thermal stability. However, while existing studies predominantly focus on spin-transport properties, systematic studies on their magnetostriction remain scarce. The electronic structure and magnetism of Co-based Heusler alloys are critically dependent on atomic-site ordering: their spin polarization, Curie temperature, and magnetocrystalline anisotropy are closely correlated with crystal structures (e.g., L21, B2). A highly ordered L21 structure is essential for preserving half-metallicity, whereas structural disorder can induce significant changes in electronic hybridization and exchange interactions, which significantly alter macroscopic magnetic properties. Additionally, ordering control is also expected to modulate magnetostriction by modifying lattice symmetry and local distortions. Notably, in Fe–Ga alloys, disorder engineering has been employed to induce local short-range order and lattice distortions, thereby enhancing magnetostriction—a mechanism that may similarly operate in Co-based systems. However, the higher lattice symmetry and stronger orbital hybridization in these alloys could lead to fundamentally distinct mechanisms requiring experimental validation. In this study, we focus on the Co2FeAlxSi1-x system to systematically probe the relationship between composition-driven structural evolution (i.e., L21 to B2 transition) and magnetostrictive performance via Al/Si ratio tuning. The study aims to clarify the correlation between composition-induced structural evolution and magnetostrictive behavior, thereby revealing the regulatory role of atomic ordering in magnetoelastic coupling and providing theoretical insight for the design of high-performance magnetostrictive materials.
This study systematically investigates the correlation between atomic site ordering and magnetostriction in the Heusler alloy Co2FeAlxSi1-x (x = 0, 0.25, 0.5, 0.75, 1) through experimental methods. The results reveal that Al doping drives a structural transition from the highly ordered L21 phase to the disordered B2 phase, inducing a coexisting L21/B2 interface state at x = 0.25~0.5, where the calculated ordering parameters SL21/SB2 range from 0.5 to 0.9. The experimental data demonstrate that this interface state significantly enhances the saturation magnetostriction coefficient (λs), which subsequently decreases upon further transition to the B2-dominated structure. These findings quantitatively clarify the physical mechanism by which local atomic disorder enhances magnetoelastic coupling through reduced cubic symmetry, localized lattice distortions, and altered magnetic domain configurations. Furthermore, this work first reports the magnetostriction coefficients of 12 Co-based Heusler alloys, among which Co2MnGa and Co2CrGa exhibit superior potential compared to others, filling the gap in performance parameters for this system. The linear positive magnetostriction behavior of the polycrystalline materials is also validated. This study proposes a strategy for optimizing magnetostriction performance through atomic site ordering control, offering a new direction for the development of magnetostrictive materials with high-temperature stability and high spin polarization. -
[1] Gupta R, Husain S, Kumar A, Brucas R, Rydberg A, Svedlindh P 2021 Adv. Opt. Mate. 9 2001987
[2] Kimura T, Hashimoto N, Yamada S, Miyao M, Hamaya K 2012 NPG Asia Mater. 4 e13
[3] Palmstrøm C J 2016 Prog. Cryst. Growth Ch. Mater. 62 371
[4] Yamada S, Kato M, Ichikawa S, Yamada M, Naito T, Fujiwara Y, Hamaya K 2023 Adv. Electron. Mater. 9 2300045
[5] Bachaga T, Zhang J, Khitouni M, Sunol J J 2019 Int. J. Adv. Manuf. Technol. 103 2761
[6] Planes A, Mañosa L, Moya X, Krenke T, Acet M, Wassermann E F 2007 J. Magn. Magn. Mater. 310 2767
[7] de Groot R A, Mueller F M, Engen P G v, Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[8] Galanakis I, Mavropoulos P, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765
[9] Wang W H, Sukegawa H, Shan R, Mitani S, Inomata K 2009 Appl. Phys. Lett. 95 182502
[10] Yang Y M, Li J, Ma H R, Yang G, Mao X J, Li C C 2019 Acta Phys. Sin. 68 046101 (in Chinese) [杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪 2019 物理学报 68 046101]
[11] Clark A E 1980 Ferromagnetic Materials (Vol.1) (Amsterdam:North-Holland) p531
[12] Clark A E, Restorff J B, Wun-Fogle M, Lograsso T A, Schlagel D L 2000 IEEE Trans. Magn. 36 3238
[13] Lograsso T A, Ross A R, Schlagel D L, Clark A E, Wun-Fogle M 2003 J. Alloy. Compd. 350 95
[14] Guruswamy S, Srisukhumbowornchai N, Clark A E, Restorff J B, Wun-Fogle M 2000 Scr. Mater. 43 239
[15] Sakon T, Fujimoto N, Kanomata T, Adachi Y 2017 Metals 7 410
[16] Ullakko K, Huang J K, Kantner C, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966
[17] Sato M, Okazaki T, Furuya Y, Wuttig M 2003 Mater. Trans. 44 372
[18] Zhang M, Brück E, Boer F R d, Wu G H 2005 J. Phys. D: Appl. Phys. 38 1361
[19] Dai X F, Sun C G, Qu J P, Li Y X, Zhu W, Chen J L, Wu G H 2009 Acta Phys. Sin. 58 8602 (in Chinese) [代学芳, 孙晨光, 曲静萍, 李养贤, 朱伟, 陈京兰, 吴光恒 2009 物理学报 58 8602]
[20] Ravel B, Raphael M P, Harris V G, Huang Q 2002 Phys. Rev. B 65 184431
[21] Srivastava Y, Vajpai S K, Srivastava S 2017 J. Magn. Magn. Mater. 433 141
[22] Zhao J-J, Shu D, Qi X, Liu E K, Zhu W, Feng L, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 107203 (in Chinese) [赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒 2011 物理学报 60 107203]
[23] Chumak O, Nabiałek A, Baczewski L T, Seki T, Wang J, Takanashi K, Szymczak H 2025 arXiv:2502.19102 [cond-mat.mtrl-sci]
[24] Szwacki N G, Majewski J A 2016 J. Magn. Magn. Mater. 409 62
[25] Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese) [赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 物理学报 60 047108]
[26] Balke B, Wurmehl S, Fecher G H, Felser C, Kübler J 2008 Sci. Technol. Adv. Mater. 9 014102
[27] Titov A, Jiraskova Y, Zivotsky O, Bursik J, Janickovic D 2018 AIP Adv. 8 047206
[28] Bosu S, Sakuraba Y, Saito K, Wang H, Mitani S, Takanashi K 2010 Phys. Rev. B 81 054426
[29] Chopra H D, Wuttig M 2015 Nature 521 340
[30] He Y K, Han Y J, Stamenov P, Kundys B, Coey J M D, Jiang C B, Xu H B 2018 Nature 556 E5
[31] He Y K, Jiang C B, Coey J M D, Xu H B 2018 J. Magn. Magn. Mater. 466 351
[32] Clark A E, Wun-Fogle M 2002 Smart Structures and Materials 2002 Conference San Diego, Ca, Mar 18-21, 2000 p421
[33] Ksenofontov V, Wójcik M, Wurmehl S, Schneider H, Balke B, Jakob G, Felser C 2010 J. Appl. Phys. 107 09B106
[34] Brown P J, Neumann K U, Webster P J, Ziebeck K R A 2000 J. Phys.-Condes. Matter 12 1827
[35] Buschow K H J, Vanengen P G 1981 J. Magn. Magn. Mater. 25 90
[36] Buschow K H J, Vanengen P G, Jongebreur R 1983 J. Magn. Magn. Mater. 38 1
[37] Guillemard C, Petit-Watelot S, Rojas-Sánchez J C, Hohlfeld J, Ghanbaja J, Bataille A, Le Fèvre P, Bertran F, Andrieu S 2019 Appl. Phy. Lett. 115 172401
[38] Kanomata T, Chieda Y, Endo K, Okada H, Nagasako M, Kobayashi K, Kainuma R, Umetsu R Y, Takahashi H, Furutani Y, Nishihara H, Abe K, Miura Y, Shirai M 2010 Phys. Rev. B 82 144415
[39] Karthik S V, Rajanikanth A, Takahashi Y K, Okhubo T, Hono K 2006 Appl. Phys. Lett. 89 3
[40] Kourov N I, Marchenkov V V, Perevozchikova Y A, Weber H W 2017 Phys. Solid State 59 898
[41] Kudryavtsev Y V, Uvarov N V, Iermolenko V N, Dubowik J 2010 J. Appl. Phys. 108 113708
[42] Nakatani T M, Gercsi Z, Rajanikanth A, Takahashi Y K, Hono K 2008 J. Phys. D: Appl. Phys. 41 225002
[43] Nakatani T M, Rajanikanth A, Gercsi Z, Takahashi Y K, Inomata K, Hono K 2007 J. Appl. Phys. 102 8
[44] Paudel M R, Wolfe C S, Pathak A K, Dubenko I, Ali N, Osofsky M S, Prestigiacomo J C, Stadler S 2012 J. Appl. Phys. 111 023903
[45] Paudel M R, Wolfe C S, Patton H, Dubenko I, Ali N, Christodoulides J A, Stadler S 2009 J. Appl. Phys. 105 4
[46] Rajanikanth A, Takahashi Y K, Hono K 2007 J. Appl. Phys. 101 5
[47] Rajanikanth A, Takahashi Y K, Hono K 2008 J. Appl. Phys. 103 5
[48] Ritchie L, Xiao G, Ji Y, Chen T Y, Chien C L, Zhang M, Chen J L, Liu Z H, Wu G H, Zhang X X 2003 Phys. Rev. B 68 104430
[49] Sakuraba Y, Nakata J, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H 2006 Appl. Phys. Lett. 88 3
[50] Umetsu R Y, Kobayashi K, Fujita A, Kainuma R, Ishida K, Fukamichi K, Sakuma A 2008 Phys. Rev. B 77 104422
[51] Wurmehl S, Fecher G H, Ksenofontov V, Casper F, Stumm U, Felser C, Lin H J, Hwu Y 2006 J. Appl. Phys. 99 3
[52] Zhang M, Brück E, Boer F R d, Li Z Z, Wu G H 2004 J. Phys. D: Appl. Phys. 37 2049
[53] Zhang X Q, Xu H F, Lai B L, Lu Q S, Lu X Y, Chen Y Q, Niu W, Gu C Y, Liu W Q, Wang X F, Liu C, Nie Y F, He L, Xu Y B 2018 Sci. Rep. 8 8074
计量
- 文章访问数: 39
- PDF下载量: 2
- 被引次数: 0