搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于保偏光子晶体光纤的高性能光纤激光扭转传感器

郭玉颖 杜梦珠 高炜 王鑫 盛新志 娄淑琴 廉正刚

引用本文:
Citation:

基于保偏光子晶体光纤的高性能光纤激光扭转传感器

郭玉颖, 杜梦珠, 高炜, 王鑫, 盛新志, 娄淑琴, 廉正刚

High-performance fiber ring laser torsion sensor based on polarization-maintaining photonic crystal fibers

GUO Yuying, DU Mengzhu, GAO Wei, WANG Xin, SHENG Xinzhi, LOU Shuqin, LIAN Zhenggang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于保偏光子晶体光纤提出并构建了一种掺铒光纤激光扭转传感器. 该传感器将基于保偏光子晶体光纤的Sagnac干涉仪引入掺铒光纤环形腔中作滤波器和扭转传感器件, 利用光纤激光器线宽窄、信噪比高的优势, 成功实现了高分辨率的光纤扭转传感器. 实验系统研究了激光器的输出特性及扭转响应特性. 研究结果表明, 该扭转传感可以实现的最大线性测量范围可达480°(31.02 rad/m), 最大扭转传感灵敏度为0.032 nm/(°)(0.5 nm/(rad/m)), 分辨率高达0.681°(0.06 rad/m). 同时, 在20—95 ℃温度变化范围内, 该传感器随温度的变化量仅为4×10–3 nm/℃, 温度交叉敏感带来的扭转角度的测量误差仅为0.16 (°)/℃. 其温度稳定性和温度对扭转角度测量造成的误差分别为现有报道的2/73和40/333. 本文提出的光纤激光扭转传感器具有线性响应范围宽、分辨率高、温度稳定性好等显著优势, 在航空航天、医疗微创手术、机械结构形变感知等领域具有巨大的应用潜力.
    Torsion information is important for rotating systems, industrial monitoring, transportation engineering, and medical equipment. Optical fiber torsion sensors have significant advantages, such as immune to electromagnetic interference, small size, and light weight. Sagnac loop interferometer (SI) torsion sensors have attracted much attention due to their compact structure, high sensitivity, excellent stability, and low cost. However, their nonlinear response limits the measurement range, while the wide full width at half maximum and low signal-to-noise ratio (SNR) reduce the resolution of torsion sensors. To solve these problems, a fiber ring laser torsion sensor (FRLTS) based on homemade polarization-maintaining photonic crystal fiber (PM-PCF) is proposed in this work. The torsion sensor introduces a PM-PCF based SI into the erbium-doped fiber ring cavity as a filter and torsion sensor device. The interference spectrum of SI is derived by the transmission matrix method and simulated, and then the sensing principle of the sensor is obtained. Subsequently, the experimental system is set up to study the lasing output characteristics and torsion response of the FRLTS. By taking advantage of the narrow linewidth and high signal-to-noise ratio (SNR) of fiber ring lasers, a high-resolution fiber torsion sensor is successfully obtained. The experimental results show that the maximum linear torsion measurement range of the sensor can be extended to 480° (from –260° to 220°), the maximum torsion sensitivity is 0.032 nm/(°), and the resolution is as high as 0.681°. Furthermore, in a temperature range from 20 ℃ to 95 ℃, the temperature-induced wavelength variation is only 4×10–3 nm/℃, corresponding to a torsion angle measurement error of 0.16(°)/℃. Compared with existing reports, its temperature stability is increased by 37.5 times, while the temperature-induced error in angle measurements is reduced by 9.375 times. The proposed FRLTS not only successfully achieves high-resolution and wide-range torsion sensing, but also effectively suppresses cross-sensitivity caused by temperature. Therefore, the torsion sensor has significant potential applications in fields such as aerospace and robotics where precise measurement of minute torsion angle is required in special environments.
  • 图 1  基于PM-PCF-SI的光纤环形激光器 (a) 自研PM-PCF扫描电镜端面图; (b) 基于SI的掺铒光纤环形激光器原理示意图

    Fig. 1.  Fiber ring laser based on PM-PPCF-SI: (a) SEM diagram of the cross section of homemade PM-PCF; (b) schematic diagram of Erbium-doped fiber ring laser based on PM-PCF-SI.

    图 2  SI滤波器的扭转响应光谱 (a) 滤波谱随扭转角度的变化(仿真); (b) 滤波器谐振峰波长随扭转角度的变化(仿真); (c) 滤波谱随扭转角度的变化(实验); (d) 滤波器谐振峰波长随扭转角度的变化(实验)

    Fig. 2.  The torsion response spectrum of the SI filter: (a) Variation of the filter spectrum with the torsion angle (simulation); (b) variation of the peak wavelength of the filter with the torsion angle (simulation); (c) variation of the filter spectrum with the torsion angle (experiment); (d) variation of peak wavelength of the filter with torsion angle (experiment).

    图 3  基于SI的激光器扭转传感器实验装置示意图

    Fig. 3.  Schematic of the experimental device for the laser torsion sensor based on SI.

    图 4  单波长激光输出及其稳定性 (a) 60 min内输出激光光谱; (b) 60 min内激光功率和波长随时间的变化

    Fig. 4.  Single wavelength lasing output and output stability: (a) Single wavelength lasing output spectrum within 60 min; (b) the variation of laser power and wavelength within 60 mins.

    图 5  基于PM-PCF-SI的激光器扭转传感器的扭转响应 (a) 不同扭转角度下的激光光谱; (b) 激光波长随扭转角度的变化

    Fig. 5.  Torsion response of the laser torsion sensor based on PM-PCF-SI: (a) Laser spectra at different torsion angles; (b) the variation of laser wavelength with the torsion angle.

    图 6  不同长度PM-PCF对应的激光调谐范围 (a) 47 cm; (b) 27 cm; (c) 15 cm

    Fig. 6.  Corresponding output laser tuning range of different lengths of PM-PCF: (a) 47 cm; (b) 27 cm; (c) 15 cm.

    图 7  顺时针施加扭转时, 激光输出波长随扭转角度的变化 (a) 输出激光峰值波长随扭转角度的变化情况; (b) 输出激光波长与扭转角度的关系

    Fig. 7.  The variation of the lasing wavelength with torsion angle when torsion is applied along clockwise direction: (a) Variation of the output laser wavelength with the torsion angle; (b) the relationship between laser wavelength and torsion angle.

    图 8  逆时针施加扭转时, 激光输出波长随扭转角度的变化 (a) 输出激光峰值波长随扭转角度的变化情况; (b) 激光波长与扭转角度的关系

    Fig. 8.  The variation of the lasing wavelength with torsion angle when torsion is applied along counterclockwise direction: (a) Variation of the output laser wavelength with the torsion angle; (b) the relationship between laser wavelength and torsion angle.

    图 9  顺时针及逆时针施加扭转时, 矢量扭转角度的测量 (a) 输出激光峰值波长随扭转角度的变化情况; (b) 激光波长与扭转角度的关系

    Fig. 9.  Measurement of the vector torsion angle when torsion is applied clockwise and counterclockwise: (a) Variation of the output laser wavelength with the torsion angle; (b) the relationship between output laser wavelength and torsion angle.

    图 10  扭转传感器的迟滞性

    Fig. 10.  Hysteresis of the torsion sensor.

    图 11  在20—95 ℃范围内扭转传感器的温度稳定性 (a) 输出激光光谱; (b) 输出激光波长随温度的波动

    Fig. 11.  Temperature stability of the torsion sensor in the range from 20 ℃ to 95 ℃: (a) Output laser spectrum; (b) the fluctuation of the output laser wavelength with temperature.

    表 1  各类型激光传感器性能对比

    Table 1.  Performance comparison of various types of laser sensors.

    Type Structures Linear response range Sensitivity Resolution Direction Temperature
    error
    Refs.
    FRLTS LPG based FRLRS 47° (–23.5°—23.5°)
    200 rad/m (–100—100 rad/m)
    0.0062 nm/(°)
    0.084 nm/(rad/m)
    4.33°
    0.12 rad/m
    Yes [27]
    PMF based FRLTS 300° (0°—300°) 0.043 nm/(°) 2.45° Yes [19]
    Side-Polished MZI Fiber based FRLTS 160° (–80°—80°)
    11.2 rad/m (–5.6 rad/m—5.6 rad/m)
    0.019 nm/(°)
    0.27 nm(/rad/m)
    Yes [23]
    elliptical-core based FRLTS 340° (–340°—0°) 0.1 nm/(°) 0.43° Yes 1.5° [21]
    SSAF based FRLTS 380° (–380°—0°)
    16.6 rad/m (–16.6 rad/m—0 rad/m)
    0.0625 nm/(°)
    1.97 nm/(rad/m)
    4.73°
    0.015 rad/m
    Yes [20]
    PM-PCF based FRLTS 480° (–260°—220°)
    –16.8 rad/m—14.22 rad/m
    (31.02 rad/m)
    0.032 nm/(°)
    0.5 nm/(rad/m)
    0.681°
    0.06 rad/m
    Yes 0.16° This
    work
    下载: 导出CSV
  • [1]

    Cui J X, Cheng X, Gunawardena D S, Leong C Y, Dash J N, Lau A P T, Tam H Y 2024 Opt. Laser Technol. 174 110548Google Scholar

    [2]

    Cao J Q, Wang B, Huang B S, Lou S Q, Sheng Z F, Chu P K 2024 J. Lightwave Technol. 42 5743Google Scholar

    [3]

    López-Higuera J M, Cobo L R, Incera A Q, Cobo A 2011 J. Lightwave Technol. 29 587Google Scholar

    [4]

    Yin G L, Xu Z, Ma J M, Zhu T 2022 J. Lightwave Technol. 41 1851

    [5]

    Zheng Y C, Li J J, Liu Y, Li Y, Qu S L 2023 J. Lightwave Technol. 42 2513

    [6]

    Duan J A, Xie Z, Wang C, Zhou J Y, Li H T, Luo Z, Chu D K, Sun X Y 2016 Opt. Laser Technol. 83 94Google Scholar

    [7]

    Lin C Y, Wang L A, Chern G W 2001 J. Lightwave Technol. 19 1159Google Scholar

    [8]

    朱涛, 饶云江, 莫秋菊 2006 物理学报 55 249Google Scholar

    Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249Google Scholar

    [9]

    Ghasemi P, Yam S S H 2022 J. Lightwave Technol. 40 1224Google Scholar

    [10]

    Yin G L, Fu Q J, Yang P X, Zhu T 2022 Opt. Laser Technol. 156 108461Google Scholar

    [11]

    Cao J Q, Lou S Q, Huang B S, Gu S, Jia H Q, Sheng X Z, Wang X 2023 Opt. Fiber Technol. 80 103431Google Scholar

    [12]

    Zhang R W, Liu X J, Shang Q H, Yang J R 2023 J. Lightwave Technol. 42 921

    [13]

    Shi L L, Zhu T, Fan Y E, Chiang K S, Rao Y J 2011 Opt. Commun. 284 5299Google Scholar

    [14]

    娄淑琴, 鹿文亮, 王鑫 2013 物理学报 62 090701Google Scholar

    Lou S Q, Lu W L, Wang X 2013 Acta Phys. Sin. 62 090701Google Scholar

    [15]

    Chen W G, Lou S Q, Wang L W, Zou H, Lu W L, Jian S S 2011 IEEE Photonics Technol. Lett. 23 1639Google Scholar

    [16]

    Huang B, Shu X W 2018 Opt. Express 26 4563Google Scholar

    [17]

    Htein L, Gunawardena D S, Liu Z Y, Tam H Y 2020 Opt. Express 28 33841Google Scholar

    [18]

    Lin W H, Shao L Y, Vai M I, Shum P P, Liu S Q, Liu Y B, Zhao F, Xiao D R, Liu Y H, Tan Y D, Wang W Z 2021 J. Lightwave Technol. 39 3350Google Scholar

    [19]

    Liu X J, Wang F J, Yang J R, Zhang X D, Du X L 2019 Sensors 19 3613Google Scholar

    [20]

    Cao J Q, Guo Y Y, Gao W, Wang X, Lou S Q, Sheng Z F 2024 IEEE Sens. J. 25 4647

    [21]

    Ma X K, Lou S Q, Cao J Q, Huang B S 2025 Infrared Phys. Techn. 147 105776Google Scholar

    [22]

    郭玉颖, 杜梦珠, 高炜, 曹佳琦, 盛新志, 娄淑琴, 廉正刚 2025 中国激光 52 1306003Google Scholar

    Guo Y Y, Du M Z, Gao W, Cao J Q, Sheng X Z, Lou S Q, Lian Z G 2025 Chin. J. Lasers 52 1306003Google Scholar

    [23]

    Bo W, Liu B, Liu J, He X D, Yuan J H, Wu Q 2022 IEEE Sens. J. 22 7779Google Scholar

    [24]

    Zu P, Chan C C, Jin Y X, Gong T X, Zhang Y F, Chen L H, Dong X Y 2011 IEEE Photonics Technol. Lett. 23 920Google Scholar

    [25]

    Chen W G, Lou Q S, Wang L W, Zou H, Lu W L, Jian S S 2011 IEEE Photonics Technol. Lett. 23 1639Google Scholar

    [26]

    Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors 7 23Google Scholar

    [27]

    Shi L L, Zhu T, Fan Y E, Chiang K S, Rao Y J 2011 Opt. Commun. 284 5299Google Scholar

  • [1] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, doi: 10.7498/aps.71.20220250
    [2] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, doi: 10.7498/aps.69.20191093
    [3] 陈益沙, 廖雷, 李进延. 数值孔径对掺镱光纤振荡器模式不稳定阈值影响的实验研究. 物理学报, doi: 10.7498/aps.68.20182257
    [4] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, doi: 10.7498/aps.65.104204
    [5] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, doi: 10.7498/aps.63.134205
    [6] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, doi: 10.7498/aps.63.234202
    [7] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 物理学报, doi: 10.7498/aps.61.014216
    [8] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, doi: 10.7498/aps.60.064208
    [9] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, doi: 10.7498/aps.59.1030
    [10] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, doi: 10.7498/aps.59.7105
    [11] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, doi: 10.7498/aps.59.7892
    [12] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, doi: 10.7498/aps.58.6300
    [13] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, doi: 10.7498/aps.58.3179
    [14] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, doi: 10.7498/aps.58.7727
    [15] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, doi: 10.7498/aps.58.941
    [16] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, doi: 10.7498/aps.58.6296
    [17] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究. 物理学报, doi: 10.7498/aps.58.7695
    [18] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, doi: 10.7498/aps.57.6419
    [19] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, doi: 10.7498/aps.57.5627
    [20] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, doi: 10.7498/aps.56.3917
计量
  • 文章访问数:  380
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-11
  • 修回日期:  2025-08-11
  • 上网日期:  2025-09-02

/

返回文章
返回