搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚性毛细管内微气泡弹跳行为

李秀如 刘雅璐 马佳昱 吴玉婷 王成会 莫润阳

引用本文:
Citation:

刚性毛细管内微气泡弹跳行为

李秀如, 刘雅璐, 马佳昱, 吴玉婷, 王成会, 莫润阳

Bouncing behavior of microbubbles in rigid capillary tube

LI Xiuru, LIU Yalu, MA Jiayu, WU Yuting, WANG Chenghui, MO Runyang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 系统探究了刚性毛细管约束下微气泡在超声场中的弹跳行为及其动力学特性. 实验采用高速摄像技术捕捉了单泡、双泡及三泡系统在黏弹性介质中的运动轨迹, 并结合频谱分析揭示了气泡的振荡频率、迁移规律及多泡相互作用机制. 结果表明: 气泡的弹跳行为受超声驱动频率、管壁约束、流体黏性及气泡间耦合作用的协同调控; 单泡呈现周期性左右迁移, 其振荡频率略低于超声基频, 频谱表现出非对称边带分布; 双泡系统经历抑制、加速迁移、位置交换等5个阶段, 两个泡振荡存在相位差; 三泡系统则表现出更复杂的三角构型演化与时序性迁移, 多泡协同效应增强了非线性频域特征. 管径与流体黏度分别通过改变附加质量效应和黏性能量耗散影响气泡弹跳周期. 基于改进的耦合Keller-Miksis方程, 理论模型引入镜像气泡效应, 定量解析了管壁约束下气泡的共振频率偏移及非线性声响应特性. 数值分析进一步量化了泡间距、管壁位置及介质黏性对系统非线性共振频率与相位差的调控规律. 本研究为受限环境中气泡-声场-流固耦合机制提供了新见解, 对微流控器件优化与超声医学应用具有重要指导意义.
    This study systematically investigates the bouncing behavior and dynamics of microbubbles under ultrasound excitation within a rigid capillary in order to offer quantitative insights into their oscillation characteristics, migration trajectories, and phase modulation mechanisms for applications in microfluidics, contrast-enhanced ultrasound imaging, and controlled drug delivery. A high-speed imaging system is employed to track the motion of single-, double-, and triple-bubble systems in a viscoelastic medium inside a capillary with a 0.5-mm inner diameter. Under a 28-kHz ultrasound field, bubble dynamics are captured at 100,000 frames per second. Image processing techniques, including dynamic threshold segmentation and morphological operations, are employed to extract bubble contours and centroid trajectories. Spectral analysis via fast Fourier transform (FFT) is performed to identify oscillation frequencies and modulation characteristics. Experimental results show that a single bubble undergoes periodic lateral migration, with oscillation frequency slightly below the driving frequency, and that sideband distribution in its spectrum is asymmetric. In the two-bubble system, five different dynamic stages are identified: initial suppression, accelerated migration, interaction dominance, position exchange, and a secondary approach to the wall. The bubbles oscillate at a common dominant frequency of 27.32 kHz but maintain phase difference. Modulation sidebands of approximately 0.3 kHz are observed, indicating nonlinear coupling. The three-bubble system exhibits more complex spatiotemporal evolution, including sequential migration and transitions between triangular and mirror-symmetric configurations. A notable sideband at 0.1 kHz suggests that multi-bubble synergy enhances nonlinear behavior. The tube diameter and fluid viscosity are found to influence the bouncing period through added mass effects and viscous energy dissipation, respectively. The period increases significantly with tube diameter decreasing, and decreases with fluid viscosity lessening. Theoretical modeling incorporates the mirror bubble effect into the coupled Keller-Miksis equations to account for wall confinement, thus successfully simulating the oscillation and translation of confined microbubbles. Numerical analysis further indicates that inter-bubble distance, wall proximity, and medium viscosity modulate the dynamic behavior of the system. Specifically, the bubble resonance frequency is regulated by inter-bubble distance and wall confinement. The two-bubble system exhibits both in-phase and out-of-phase modes, with the latter being more sensitive to distance variation. Near the wall, the oscillation frequency decreases, and the phase difference attenuation accelerates. Increasing medium viscosity will weaken the phase coupling between bubbles, an effect which is particularly evident for smaller bubbles. This study not only enhances the understanding of multi-bubble synergistic effects in confined spaces but also provides a theoretical foundation and technical reference for optimizing ultrasound contrast agents, designing microfluidic devices, and developing targeted therapies in biomedicine.
  • 图 1  实验装置图像

    Fig. 1.  Experimental setup schematic.

    图 2  超声场信号 (a) 波形图; (b) 信号幅度谱

    Fig. 2.  Ultrasonic field signals: (a) Waveform diagram; (b) signal amplitude spectrum.

    图 3  单泡在管内弹跳的连续时序图像

    Fig. 3.  Sequential images of single bubble bouncing in the capillary tube.

    图 4  不同时段单泡振荡行为 (a) 0—14 ms半径时域变化; (b) 0—14 ms频谱分析; (c) 30—44 ms半径时域变化; (d) 30—44 ms频谱分析

    Fig. 4.  Oscillation behavior of single bubble at different time intervals: (a) Radius temporal variation during 0–14 ms; (b) spectral analysis during 0–14 ms; (c) radius temporal variation during 30–44 ms; (d) spectral analysis during 30–44 ms.

    图 5  不同时段单泡平动行为 (a) 0—14 ms时段x方向位移; (b) 0—14 ms时段x方向速度; (c) 30—44 ms时段y方向位移; (d) 30—44 ms时段y方向速度

    Fig. 5.  Translational behavior of single bubble at different time intervals: (a) x-direction displacement during 0–14 ms; (b) x-direction velocity during 0–14 ms; (c) y-direction displacement during 30–44 ms; (d) y-direction velocity during 30–44 ms.

    图 6  双泡在管内弹跳的连续时序图像

    Fig. 6.  Sequential images of dual-bubble bouncing in the capillary tube.

    图 7  双泡半径时域变化(a), (c)及频谱分析(b), (d)

    Fig. 7.  (a), (c) Temporal radius variations and (b), (d) spectral analysis of dual-bubble system.

    图 8  两泡在管内弹跳的(a), (c)位置及(b), (d)速度变化

    Fig. 8.  (a), (c) Position and (b), (d) velocity variations of two bubbles bouncing in the tube.

    图 9  三泡在管内弹跳的连续时序图像

    Fig. 9.  Sequential images of triple-bubble bouncing in the capillary tube.

    图 10  三泡半径时域图(a), (c), (e)及频谱分析(b), (d), (f)

    Fig. 10.  (a), (c), (e) Temporal radius profiles and (b), (d), (f) spectral analysis of triple-bubble system.

    图 11  三泡在管内弹跳的(a), (c)位置及(b), (d)速度变化

    Fig. 11.  (a), (c) Position and (b), (d) velocity variations of three bubbles bouncing in the tube.

    图 12  (a)管径及(b)黏度对单泡弹跳周期的影响

    Fig. 12.  Effects of (a) tube diameter and (b) viscosity on the period of single bubble bouncing.

    图 13  理论模型与实验对照 (a) 单泡模型图($ {R_{10}} = 142.7 \;{\text{μm}} $, $ {l_{{1 \text{a}}}} = 575.8 \;{\text{μm}} $, $ {l_{{1 \text{b}}}} = 424.2 \;{\text{μm}} $, $ \left( {{x_1}, {y_1}} \right) =\left( 893.9 \;{\text{μm}}, $$ 833.3 \;{\text{μm}} \right) $); (b) 双泡模型图($ {R_{10}} = 157.5 \;{\text{μm}} $, $ {R_{20}} = 159.6 \;{\text{μm}} $, $ {l_{{1 \text{a}}}} = 575.8 \;{\text{μm}}$, $ {l_{{1 \text{b}}}} = 424.2 \;{\text{μm}} $, $ {l_{2{\text{a}}}} = 393.9 \;{\text{μm}} $, $ {l_{{2 \text{b}}}} = $$ 606.1 \;{\text{μm}} $, $ {D_{12}} = 1136.4 \;{\text{μm}} $, $ \left( {{x_1}, {y_1}} \right) = \left( {814.7 \;{\text{μm}}, 1363.6 \;{\text{μm}}} \right) $, $ \left( {{x_2}, {y_2}} \right) = \left( {1009.9 \;{\text{μm}}, 242.4 \;{\text{μm}}} \right) $); (c) 单泡振荡特性; (d) 双泡振荡特性; (e) 单泡平动特性; (f) 双泡平动特性

    Fig. 13.  Comparison between theoretical model and experimental results: (a) Single-bubble model ($ {R_{10}} = 142.7 \;{\text{μm}} $, $ {l_{{1 \text{a}}}} = 575.8 \;{\text{μm}} $, $ {l_{{1 \text{b}}}} = 424.2 \;{\text{μm}} $, $ \left( {{x_1}, {y_1}} \right) = \left( {893.9 \;{\text{μm}}, 833.3 \;{\text{μm}}} \right) $); (b) dual-bubble model ($ {R_{10}} = 157.5 \;{\text{μm}} $, $ {R_{20}} = 159.6 \;{\text{μm}} $, $ {l_{{1 \text{a}}}} = 575.8 \;{\text{μm}} $, $ {l_{{1 \text{b}}}} = 424.2 \;{\text{μm}} $, $ {l_{2{\text{a}}}} = 393.9 \;{\text{μm}} $, $ {l_{{2 \text{b}}}} = 606.1 \;{\text{μm}} $, $ {D_{12}} = 1136.4 \;{\text{μm}} $, $ \left( {{x_1}, {y_1}} \right) = \left( {814.7 \;{\text{μm}}, 1363.6 \;{\text{μm}}} \right) $, $ \left( {{x_2}, {y_2}} \right) = \left( {1009.9 \;{\text{μm}}, 242.4 \;{\text{μm}}} \right) $); (c) single-bubble oscillation characteristics; (d) dual-bubble oscillation characteristics; (e) single-bubble translational behavior; (f) dual-bubble translational behavior.

    图 14  泡间距离对共振频率(a)和相位差(b)的影响

    Fig. 14.  Effect of inter-bubble distance on the (a) resonance frequency and (b) phase difference.

    图 15  管壁约束对共振频率(a)和相位差(b)的影响

    Fig. 15.  Effect of Wall confinement on the (a) resonance frequency and (b) phase difference.

    图 16  两泡间振荡相位差随介质黏度的变化

    Fig. 16.  Variation of oscillation phase difference between two bubbles with medium viscosity.

  • [1]

    Jiang L L, Xue Z Q, Park H 2019 Int. J. Heat Mass Transf. 138 1211Google Scholar

    [2]

    Zhai H Y, Xue Z Q, Park H, Aizawa Y, Baba Y, Zhang Y 2020 J. Nat. Gas Sci. Eng. 77 103233Google Scholar

    [3]

    Chen H, Kreider W, Brayman A A, Bailey M R, Matula T J 2011 Phys. Rev. Lett. 106 034301Google Scholar

    [4]

    Miller D L, Quddus J 2000 Proc. Natl. Acad. Sci. U. S. A. 97 10179Google Scholar

    [5]

    Marmottant P, Hilgenfeldt S 2004 Proc. Natl. Acad. Sci. U. S. A. 101 9523Google Scholar

    [6]

    Liu Y, Zhou Y, Zhang W, Chen S, Liang S 2024 J. Biomed. Eng. 41 919

    [7]

    Sambo C, Liu N, Shaibu R, Ahmed A, Hashish R 2023 Geoenergy Sci. Eng. 221 111185Google Scholar

    [8]

    Mamba S S, Magniez J C, Zoueshtiagh F, Baudoin M 2018 J. Fluid Mech. 838 165Google Scholar

    [9]

    Averkiou M A, Bruce M F, Powers J E, Sheeran P S, Burn P N 2020 Ultrasound Med. Biol. 46 498Google Scholar

    [10]

    Battat S, Weitz D A, Whitesides G M 2022 Chem. Rev. 122 6921Google Scholar

    [11]

    Rasouli M R, Tabrizian M 2019 Lab Chip 19 3316Google Scholar

    [12]

    Liao A H, Ho H C, Lin Y C, Chen H K, Wang C H 2015 PLoS One. 10 e0138500Google Scholar

    [13]

    Minnaert M 1933 Philos. Mag. 16 235Google Scholar

    [14]

    Plesset M S 1949 J. Appl. Mech. 16 277Google Scholar

    [15]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [16]

    Qin S, Ferrara K W 2006 Phys. Med. Biol. 51 5065Google Scholar

    [17]

    Zhong P, Zhou Y F, Zhu S L 2001 Ultrasound Med. Biol. 27 119Google Scholar

    [18]

    Caskey C F, Stieger S M, Qin S, Dayton P A, Ferrara K W 2007 J. Acoust. Soc. Am. 122 1191Google Scholar

    [19]

    Zhang L L, Chen W Z 2024 Ultrason. Sonochem. 110 107050Google Scholar

    [20]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [21]

    Wang C, Lin S 2011 Acta Acust. 36 325

    [22]

    Zilonova E, Solovchuk M, Sheu T W H 2019 Phys. Rev. E 99 023109Google Scholar

    [23]

    Zou Q Q, Zhong X H, Zhang B Y, Gao A Y, Wang X, Li Z Y, Qin D 2023 Ultrasonics 134 107089Google Scholar

    [24]

    Fei Y J, Zhu C Y, Fu T T, Gao X Q, Ma Y G 2022 Chin. J. Chem. Eng. 50 66Google Scholar

    [25]

    Hu M, Wang F, Li Y, Chen L, Wu W, Huo P, Deng D 2025 Phys. Rev. Lett. 134 104004Google Scholar

    [26]

    Magnaudet J, Legendre D 1998 Phys. Fluids 10 550Google Scholar

    [27]

    Legendre D, Magnaudet J, Mougin G 2003 J. Fluid Mech. 497 133Google Scholar

    [28]

    Qi H Y, Liu J T, Sun X Y, Deng P, Zhang D M, Song Y X 2024 Phys. Fluids 36

    [29]

    Alt E, Banyai S, Banyai M, Koppensteiner R 2002 Thromb. Res. 107 101Google Scholar

    [30]

    Lei Z K, Dong X R, Zuo X Y, Wang C H, Wu Y R, Lin S Y, Guo J Z 2024 J. Acoust. Soc. Am. 156 3373Google Scholar

    [31]

    Guo C, Wang J, Li X H, Yang S Q, Li W H 2024 Chem. Eng. Process. 199 109765Google Scholar

    [32]

    Doinikov A A 2001 Phys. Rev. E 64 026301Google Scholar

    [33]

    Ida M 2009 Phys. Rev. E 79 016307Google Scholar

    [34]

    Sugita N, Sugiura T 2017 Ultrasonics 74 174Google Scholar

    [35]

    Regnault G, Doinikov A A, Laloy G, Mauger C, Benon P, Catheline S, Inserra C 2024 Phys. Fluids 36

  • [1] 张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波. 超声场中气泡运动规律及其与枝晶相互作用机制. 物理学报, doi: 10.7498/aps.73.20240721
    [2] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用. 物理学报, doi: 10.7498/aps.72.20230863
    [3] 潘文韬, 文琳, 李姗姗, 潘振海. Y型微通道内气泡非对称破裂行为的数值研究. 物理学报, doi: 10.7498/aps.71.20210832
    [4] 贺传晖, 刘高洁, 娄钦. 大密度比气泡在含非对称障碍物微通道内的运动行为. 物理学报, doi: 10.7498/aps.70.20211328
    [5] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用. 物理学报, doi: 10.7498/aps.69.20200764
    [6] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, doi: 10.7498/aps.68.20191198
    [7] 高朋林, 郑皓, 孙光爱. 中子星对自旋相关轴矢量新相互作用的约束. 物理学报, doi: 10.7498/aps.68.20190477
    [8] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.67.20181311
    [9] 郑监, 张舵, 蒋邦海, 卢芳云. 气泡与自由液面相互作用形成水射流的机理研究. 物理学报, doi: 10.7498/aps.66.044702
    [10] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, doi: 10.7498/aps.64.015201
    [11] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究. 物理学报, doi: 10.7498/aps.63.194703
    [12] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究. 物理学报, doi: 10.7498/aps.63.054705
    [13] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, doi: 10.7498/aps.62.120502
    [14] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究. 物理学报, doi: 10.7498/aps.62.214703
    [15] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究. 物理学报, doi: 10.7498/aps.61.224702
    [16] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, doi: 10.7498/aps.61.084701
    [17] 龚燕君, 章 东, 郗晓宇, 龚秀芬, 刘 政. 调频激励增强微气泡的次谐波理论和实验研究. 物理学报, doi: 10.7498/aps.56.7051
    [18] 陈陆君, 梁昌洪, 吴鸿适. 水槽中孤波相互作用的微扰变分分析. 物理学报, doi: 10.7498/aps.41.1745
    [19] 王耀俊. 超声与固体中含气泡层的相互作用. 物理学报, doi: 10.7498/aps.41.37
    [20] 钱祖文. 水中气泡之间的声相互作用. 物理学报, doi: 10.7498/aps.30.442
计量
  • 文章访问数:  225
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-09-08
  • 上网日期:  2025-09-17

/

返回文章
返回