搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛细管放电等离子体射流的瞬态辐射热流特性实验研究

刘天旭 王若丹 熊涛 王亚楠 赵政 孙安邦

引用本文:
Citation:

毛细管放电等离子体射流的瞬态辐射热流特性实验研究

刘天旭, 王若丹, 熊涛, 王亚楠, 赵政, 孙安邦

Transient radiative heat flux characteristics in capillary discharge plasma jets

LIU Tianxu, WANG Ruodan, XIONG Tao, WANG Yanan, ZHAO Zheng, SUN Anbang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 毛细管放电等离子体射流点火装置结构简单可靠, 点火效能强, 是当前工业和学术领域的研究热点. 射流瞬态辐射热流特性是表征射流点火能力的重要手段, 本文搭建了基于薄膜量热计的瞬态辐射热流测量系统, 针对薄膜探头的测量范围、响应时间和灵敏度提出设计与优化方法; 研究了聚乙烯和聚四氟乙烯不同工质情况下, 储能电容电压和毛细管直径对输出辐射热流特性的影响. 结果表明, 毛细管放电辐射热流密度相较于主放电电流具有滞后性, 增大系统储能有助于提升主放电沉积能量效率与等离子体温度, 进而提升输出辐射热流密度与热流持续时间; 增大毛细管直径会减小放电时间常数进而缩短热流持续时间, 当毛细管直径从1.5 mm增至3 mm时, 辐射热流密度显著提升, 而当毛细管直径从3 mm增至6 mm时, 辐射热流密度随之下降. 此外, 主放电能量沉积效率、等离子体射流扩展特性以及工质烧蚀特性均会影响辐射热流密度; 聚乙烯工质毛细管放电较聚四氟乙烯工质辐射热流密度峰值更高, 峰值时间提前且持续时间更短.
    The capillary discharge plasma ignition device features a simple and reliable structure with a high ignition efficiency, and has become a research focus in both industrial applications and academic studies. The transient radiative heat flux characteristics of the plasma jet is a critical indicator for characterizing its ignition capability. In this work, a transient radiative heat flux measurement system based on a thin-film heatflux gauge is established. Design and optimization methods are proposed to address the measurement range, response time, and sensitivity of the thin-film probe. The results indicate that reducing the thickness of the film can enhance measurement sensitivity effectively, whereas changing the film material yields relatively limited improvement. Additionally, the effects of energy storage capacitor voltage and capillary diameter on the output radiative heat flux characteristics are investigated using polyethylene and polytetrafluoroethylene as capillary propellant. The results indicate that the radiative heat flux of capillary discharge exhibits a temporal delay compared with the main discharge current. Increasing the voltage of the energy storage capacitor enhances the energy deposition efficiency of the main discharge and the plasma temperature, thereby improving both the output radiative heat flux and the duration of the heat flux. Moreover, the growth rate of the heat flux exceeds that of the stored energy. Enlarging the capillary diameter reduces the discharge time constant, thereby shortening the heat flux duration. At the same time, the ablation of the propellant becomes more sufficient, resulting in fewer jet deposits and a weaker absorption of the heat flux. When the capillary diameter increases from 1.5 mm to 3 mm, the jet expansion velocity and the energy deposition efficiency are significantly enhanced, leading to a remarkable increase in the radiative heat flux density. However, when the diameter further increases from 3 mm to 6 mm, the jet expansion velocity changes marginally, while the decrease of energy deposition efficiencycan result in a reduction in radiative heat flux. The capillary discharge with polyethylene propellant exhibits a higher peak radiative heat flux, an earlier peak time, and a shorter duration than that with the polytetrafluoroethylene propellant.
  • 图 1  量热计探头的金属薄膜结构图

    Fig. 1.  Schematic of the metal thin-film in the heat flux gauge probe.

    图 2  薄膜量热计测量系统的结构图 (a) 量热计探头; (b) 驱动电路

    Fig. 2.  Schematic of the film heatflux gauge measurement system: (a) The probe of the heat flux gauge; (b) the drive circuit.

    图 3  量热计探头的电阻-温度关系

    Fig. 3.  Resistance-temperature relationship of the heatflux gauge probe.

    图 4  毛细管放电等离子体射流实验平台结构图

    Fig. 4.  Schematic of the capillary discharge plasma experimental platform.

    图 5  毛细管放电射流装置结构图

    Fig. 5.  Schematic of the capillary discharge device.

    图 6  不同工质毛细管放电电压与电流波形 (a) PE; (b) PTFE

    Fig. 6.  Voltage and current waveforms of capillary discharge with different propellant: (a) PE; (b) PTFE.

    图 7  高速相机拍摄的不同工质等离子体射流在空气中发展过程 (a) PE; (b) PTFE

    Fig. 7.  Image sequence of plasma jet development in air captured by high-speed camera with different propellant: (a) PE; (b) PTFE.

    图 8  PE和PTFE工质等离子体射流长度和宽度随时间变化趋势

    Fig. 8.  Temporal variation of the length and width of plasma jets with PE and PTFE propellant.

    图 9  驱动电路V0V1电压波形(200 kHz低通滤波)

    Fig. 9.  Voltage waveform of V0 and V1 in the drive circuit (200 kHz low-pass filtered).

    图 10  PE和PTFE工质毛细管放电热负荷与热流密度

    Fig. 10.  The heat load and the heat flux of the capillary discharge with PE and PTFE propellant.

    图 11  C1不同充电电压下的主放电电流波形 (a) PE; (b) PTFE

    Fig. 11.  The main discharge current waveform under different charging voltage of C1: (a) PE; (b) PTFE.

    图 12  C1不同充电电压下不同放电阶段能量沉积效率

    Fig. 12.  The energy deposition efficiency of different discharge stage under different charging voltage of C1.

    图 13  C1不同充电电压下等离子体射流尺寸随时间变化 (a) PE长度; (b) PE宽度; (c) PTFE长度; (d) PTFE宽度

    Fig. 13.  Temporal variation of plasma jet sizes under different charging voltage of C1: (a) PE length; (b) PE width; (c) PTFE length; (d) PTFE width.

    图 14  C1不同充电电压下的热流密度随时间变化 (a) PE; (b) PTFE

    Fig. 14.  Temporal variation of the heatflux under different charging voltage of C1: (a) PE; (b) PTFE.

    图 15  C1不同储能条件下毛细管放电热负荷与热流密度峰值

    Fig. 15.  The heat load and the peak heat flux under different storage energy of C1.

    图 16  不同毛细管直径下主放电电流波形 (a) PE; (b) PTFE

    Fig. 16.  The main discharge current waveform under different capillary diameters: (a) PE; (b) PTFE.

    图 17  不同毛细管直径下不同放电阶段能量沉积效率

    Fig. 17.  The energy deposition efficiency of different discharge stage under different capillary diameter.

    图 18  不同直径毛细管放电等离子体射流尺寸随时间变化 (a) PE长度; (b) PE宽度; (c) PTFE长度; (d) PTFE宽度

    Fig. 18.  Temporal variation of plasma jet sizes under different capillary diameter: (a) PE length; (b) PE width; (c) PTFE length; (d) PTFE width.

    图 19  不同直径下的热流密度随时间变化 (a) PE; (b) PTFE

    Fig. 19.  Temporal variation of heat flux under different capillary diameter: (a) PE; (b) PTFE.

    图 20  不同毛细管直径放电热负荷与热流密度

    Fig. 20.  The heat load and the peak heat flux under different capillary diameter.

    图 21  不同直径毛细管放电后PMMA挡板上沉积物

    Fig. 21.  Deposits on the PMMA boards after discharge with different capillary diameter.

    表 1  常见金属薄膜物性参数与灵敏度(d = 10–6 m)

    Table 1.  Physical properties and sensitivity of common metal films (d = 10–6 m).

    材料 ρm
    /(g·cm–3)
    cp
    /(J·kg–1·K–1)
    α×10–3
    /K–1
    s×10–3
    /(m2·J–1)
    Ni 8.91 440 7.32 1.58
    Au 19.3 128 4.04 1.47
    Ag 10.5 235 4.13 1.52
    Cu 8.92 385 4.40 1.16
    Fe 7.87 449 7.09 1.70
    Al 2.70 897 4.60 1.74
    Pt 21.1 133 3.88 1.26
    Pd 12.0 240 3.76 1.12
    Mg 1.74 1023 4.14 2.07
    下载: 导出CSV

    表 2  薄膜量热计热流测量系统参数

    Table 2.  Parameters of the film heatflux gauge measurement system.

    参数数值
    ρm/(kg·m–3)8.91×103
    cp/(J·kg–1·K–1)440
    l/mm13
    w/mm1.14
    d/μm3
    R10.5
    R24
    Vs/V50
    ΔTR/(K·Ω–1)653.4
    下载: 导出CSV
  • [1]

    Taylor M J 2001 IEEE Transactions on Magnetics 37 194Google Scholar

    [2]

    Gebhart T E, Martinez-Rodriguez R A, Baylor L R, Rapp J, Winfrey A L 2017 J. Appl. Phys. 122 063302Google Scholar

    [3]

    Gebhart T E, Baylor L R, Rapp J, Winfrey A L 2018 J. Appl. Phys. 123 033301Google Scholar

    [4]

    王亚楠, 葛崇剑, 程乐, 丁卫东, 耿金越 2020 推进技术 41 149

    Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2020 J. Propul. Techn. 41 149

    [5]

    Winfrey A L, Bourham M A 2013 2013 IEEE Pulsed Power and Plasma Science Conference (PPPS 2013) San Francisco, CA, USA, June 16−21, 2013 p1

    [6]

    Yang W H, Hang Y H, Fan H, Chen L, Li X W, Murphy A B 2019 J. Phys. D: Appl. Phys. 53 075204

    [7]

    Jiang S, Chen L, Shi H T, He Y Z, Li X W 2023 IEEE Trans. Plasma Sci. 51 1117Google Scholar

    [8]

    Li J, Litzinger T A, Thynell S T 2005 J. Propul. Power 21 44Google Scholar

    [9]

    Li J, Litzinger T A, Thynell S T 2004 J. Propul. Power 20 675Google Scholar

    [10]

    Wang Q, Yang W H, Hang Y H, Fan H, Li X W 2019 J. Phys. D-Appl. Phys. 52 334002Google Scholar

    [11]

    Wang Q, Hang Y H, Li X W, Jia S L 2019 IEEE Trans. Plasma Sci. 47 1950Google Scholar

    [12]

    Morgan T W, De Kruif T M, Van Der Meiden H J, Van Den Berg M A, Scholten J, Melissen W, Krijger B J M, Bardin S, De Temmerman G 2014 Plasma Phys. Control. Fusion 56 095004Google Scholar

    [13]

    Porwitzky A J, Keidar M, Boyd I D 2007 Propell. Explos. Pyrot. 32 385Google Scholar

    [14]

    Porwitzky A J, Keidar M, Boyd I D 2007 IEEE Trans. Magnet. 43 313Google Scholar

    [15]

    Yang W H, Jiang S, Chen L, Li X W, Gu K Q, He Y Z, Li W H 2021 Phys. Plasmas 28 113503Google Scholar

    [16]

    Liu S, Xu T, Shi Y H, Zhan W, Liu C Y, Lu Z J, Yang L J 2022 Rev. Sci. Instrum. 93 103544Google Scholar

    [17]

    Spielman R B, Deeney C, Fehl D L, Hanson D L, Keltner N R, McGurn J S, McKenney J L 1999 Rev. Sci. Instrum. 70 651Google Scholar

    [18]

    Das M K, Thynell S T 2006 J. Thermophys. Heat Tr. 20 903Google Scholar

    [19]

    Das M, Thynell S T, Li J, Litzinger T A 2005 J. Thermophys. Heat Tr. 19 572Google Scholar

    [20]

    蒋仕, 杨伟鸿, 陈立, 李伟昊, 李兴文, 石桓通 2022 中国电机工程学报 42 415

    Jiang S, Yang W H, Chen L, Li W H, Li X W, Shi H T 2022 Proc. CSEE 42 415

    [21]

    Starner K 1968 ISA Trans. 7 181

    [22]

    Haynes W M 2016 CRC Handbook of Chemistry and Physics (97th ed. ) (Boca Raton: CRC Press) pp 2097−2289

    [23]

    Liu T X, Cheng R Z, Wang R D, Zhao Z, Wang Y N, Sun A B 2024 Rev. Sci. Instrum. 95 093540Google Scholar

    [24]

    王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 物理学报 70 235204Google Scholar

    Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 235204Google Scholar

    [25]

    Zhang J B, Li X W, Yang W H, Yan W R, Wei D, Liu Y, Yan G H 2018 Phys. Plasmas 25 103501Google Scholar

    [26]

    Keidar M, Boyd I D, Beilis I I 2001 J. Phys. D: Appl. Phys. 34 1675Google Scholar

    [27]

    Li R, Li X W, Jia S L, Murphy A B, Shi Z Q 2010 IEEE Trans. Plasma Sci. 38 1033Google Scholar

  • [1] 李秀如, 刘雅璐, 马佳昱, 吴玉婷, 王成会, 莫润阳. 刚性毛细管内微气泡弹跳行为. 物理学报, doi: 10.7498/aps.74.20250968
    [2] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, doi: 10.7498/aps.71.20212435
    [3] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响. 物理学报, doi: 10.7498/aps.70.20211198
    [4] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性. 物理学报, doi: 10.7498/aps.68.20190902
    [5] 刘涛, 赵永蓬, 崔怀愈, 刘晓琳. 基于双程放大的毛细管放电69.8 nm激光增益特性. 物理学报, doi: 10.7498/aps.68.20181617
    [6] 吕月兰, 尹向宝, 孙伟民, 刘永军, 苑立波. 染料掺杂液晶填充毛细管的激光发射特性研究. 物理学报, doi: 10.7498/aps.67.20171844
    [7] 刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 毛细管放电类氖氩69.8 nm激光增益特性研究. 物理学报, doi: 10.7498/aps.66.155201
    [8] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, doi: 10.7498/aps.65.095201
    [9] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, doi: 10.7498/aps.64.124703
    [10] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究. 物理学报, doi: 10.7498/aps.62.245204
    [11] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, doi: 10.7498/aps.60.095202
    [12] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, doi: 10.7498/aps.59.4110
    [13] 郭铁英, 娄淑琴, 李宏雷, 简水生. 用于制作光子晶体光纤的毛细管的拉制理论与实验分析. 物理学报, doi: 10.7498/aps.58.4724
    [14] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, doi: 10.7498/aps.56.308
    [15] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, doi: 10.7498/aps.55.4734
    [16] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, doi: 10.7498/aps.55.344
    [17] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, doi: 10.7498/aps.55.733
    [18] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, doi: 10.7498/aps.54.2731
    [19] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, doi: 10.7498/aps.54.4979
    [20] 顾梅梅, 张鹏翔, 李国桢. 超巨磁阻测辐射热仪. 物理学报, doi: 10.7498/aps.49.1567
计量
  • 文章访问数:  258
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-26
  • 修回日期:  2025-09-30
  • 上网日期:  2025-10-10

/

返回文章
返回