-
弓网滑动电接触是高速列车获取能量的唯一途径. 随列车速度、牵引功率提升以及在复杂多变环境中运行, 弓网电弧发生率提高、物性参数改变、危害增加, 严重威胁高铁安全. 本文系统综述了弓网电弧研究进展, 梳理了弓网电弧物理特性、试验及仿真研究方法, 重点分析了运行参数与环境条件对弓网电弧的影响规律及机理, 归纳了防治策略并探讨了电弧能量利用等新方向. 现有工作充分研究了运行参数对弓网电弧危害特性的影响, 但对弓网电弧物性参数及演化机理的研究较少, 缺乏对覆冰等特殊工况下弓网电弧现象的研究; 且现有弓网电弧防护手段需针对复杂环境工况进行改进, 以满足日益增长的弓网电弧防护需求. 基于综述提出两点未来展望: 1)要厘清特殊环境弓网电弧物性参数, 探明“环境工况-物性参数-电弧行为”关联机制, 为精准预测提供基础; 2)要从“源头抑制-界面防护-过程干预”出发, 建立弓网电弧高效防治体系. 本文旨在为中国高速铁路弓网系统的可靠受流与电弧防治提供理论参考与工程借鉴.The pantograph-catenary system (PCS) serves as the exclusive means of power supply for high-speed trains.As train speeds increase, traction power rises, and operations take place in complex and variable environments, pantograph arcing has become more frequent. This phenomenon is accompanied by changes in physical properties and increased hazards, which seriously threaten the safety of high-speed railways. This paper systematically reviews the recent researches on pantograph arc, and outlines physical characteristics, experimental techniques, and simulation methods. The study focuses on analyzing the effects and mechanisms of operating parameters and environmental conditions on pantograph arc, summarizes prevention strategies, and explores applications such as arc energy utilization. Existing research has sufficiently examined how operational parameters affect arc hazards, yet studies on arc physical properties and evolution mechanisms remain limited, particularly regarding special conditions such as icing. Current protection methods also require adaptation to complex environments to meet the growing demands for arc management. Two future research priorities are proposed: first, clarifying the physical properties of an arc under special environments and establishing the correlation among “environmental conditions, an arc’s physical properties, and its behavior” to enable accurate prediction; second, developing an efficient arc prevention system through the approach of “source suppression, interface protection, and process intervention”. This review aims to provide theoretical and practical guidance for realizing reliable current collection and effective arc control in high-speed railway PCS in China.
-
Keywords:
- pantograph arc /
- electrical erosion /
- pantograph-catenary system /
- high-speed trains
-
图 2 弓网电弧物性参数[41] (a) 质量密度; (b) 比焓; (c) 电子比定压热容; (d) 重粒子比定压热容; (e) 电导率; (f) 热导率; (g) 黏度系数
Fig. 2. Physical parameters of pantograph arc[41]: (a) Mass density; (b) specific enthalpy; (c) electronic specific heat; (d) heavy particle specific heat; (e) electrical conductivity; (f) thermal conductivity; (g) viscosity coefficient.
图 3 弓网电弧试验平台的发展 (a) 升降弓电弧试验台[43]; (b) 盘-销式弓网载流摩擦试验台[45]; (c) 高速弓网试验台[46]; (d) 弓网电弧试验台[47]
Fig. 3. Development of pantograph arc test platform: (a) Static arc test platform[43]; (b) pantograph-catenary current-carrying friction test platform[45]; (c) high-speed pantograph-catenary test platform[46]; (d) pantograph arc test platform[47].
图 9 高铁运行参数对弓网电弧特性的影响 (a) 列车速度对弓网电弧特性的影响[10]; (b) 电流特征对弓网电弧能量的影响[11]; (c) 列车速度对电弧功率与持续时间的影响[57]
Fig. 9. Influence of high-speed train operating conditions on pantograph arc characteristics: (a) Influence of train speed on arc characteristics[10]; (b) influence of current characteristics on arc energy[11]; (c) influence of speed on arc power and duration[57].
图 10 高铁运行参数对弓网电弧电磁干扰的影响 (a) 接触力对电弧电磁干扰的影响[59,64]; (b) 运行车速对电弧电磁干扰的影响[60]; (c) 牵引电流对电弧电磁干扰的影响[60]
Fig. 10. Influence of high-speed train operating conditions on arc electromagnetic interference (a) Effect of contact force on arc electromagnetic interference[59,64]; (b) effect of vehicle speed on arc electromagnetic interference[60]; (c) effect of traction current on arc electromagnetic interference[60].
图 11 高铁运行参数对电弧烧蚀行为的影响 (a) 接触力波动对电弧发生率的影响[15]; (b) 电弧发生率对侵蚀量的影响[47]; (c) 车速对电弧烧蚀面积的影响[69]
Fig. 11. Influence of high-speed train operating conditions on arc ablation behavior: (a) Effect of contact force fluctuation on arcing incidence[15]; (b) effect of arc rate on erosion[47]; (c) effect of vehicle speed on arc ablation area[69].
图 13 大气环境对电弧的影响[18] (a) 气流对弧柱弧根的影响; (b) 气压对弧柱弧根的影响; (c) 气流对电弧运动速度的影响; (d) 气压对电弧运动速度的影响
Fig. 13. Influence of atmospheric environment on arcing[18]: (a) Effect of airflow on arc column and root; (b) effect of air pressure on arc column and root; (c) effect of airflow on arc velocity; (d) effect of air pressure on arc velocity.
图 14 潮湿降雨环境对电弧的影响 (a) 降雨量对电弧电压的影响[76]; (b) 降雨量对电弧形态的影响[76]; (c) 湿度对弓网电弧特性的影响[20]; (d) 雨水酸性对电弧放电频次的影响[19]
Fig. 14. Influence of humid and rainy environment conditions on arcing: (a) Effect of rainfall on arc voltage[76]; (b) effect of rainfall on arc morphology[76]; (c) effect of humidity on arc characteristics[20]; (d) effect of rainwater acidity on arc discharge frequency[19].
表 1 弓网电弧仿真模型
Table 1. Pantograph arc simulation model.
表 2 受电弓滑板材料性能参数表
Table 2. Material parameters of pantograph slider.
-
[1] Huang G Z, Wu G N, Yang Z F, Chen X, Wei W F 2023 Appl. Energy 333 120608
Google Scholar
[2] Yang Z F, Xu P, Wei W F, Gao G Q, Zhou N, Wu G N 2020 IEEE Trans. Plasma Sci. 48 2822
Google Scholar
[3] Li Z, Huang G Z, Wu G N, Gao G Q, Yang Z F, Zhu H Y, Gan G W 2024 Cold Reg. Sci. Technol. 227 104306
Google Scholar
[4] Luo Y F, Yang Z F, Dong K L, Qian P Y, Xia L Y, Huang C, Zhang H, Wu G N, Wei W F 2024 IEEE Trans. Transp. Electrif. 10 6707
Google Scholar
[5] 张鲲, 张扬, 查晓明, 熊一, 彭光强, 樊友平 2012 物理学报 61 164
Zhang K, Zhang Y, Zha X M, Xiong Y, Peng G Q, Fan Y P 2012 Acta Phys. Sin. 61 164
[6] Wu G N, Dong K L, Xu Z L, Xiao S, Wei W F, Chen H, Li J, Huang Z L, Li J W, Gao G Q, Kang G Z, Tu C J, Huang X Y 2022 Railway Eng. Sci. 30 437
Google Scholar
[7] 李兴文, 贾胜利, 张博雅 2020 高电压技术 46 757
Li X W, Jia S L, Zhang B Y 2020 High Volt. Eng. 46 757
[8] 陈树君, 徐斌, 蒋凡 2017 金属学报 53 631
Chen S J, Xu B, Jiang F 2017 Acta Metall. Sin. 53 631
[9] 王晓蕾, 蔡汉, 赵贤根, 刘 刚, 廖民传, 屈路 2020 高电压技术 46 4300
Wang X L, Cai H, Zhao X G, Liu G, Liao M C, Qu L 2020 High Volt. Eng. 46 4300
[10] 马云双, 刘志刚, 闻映红, 马岚, 张金宝 2013 北京交通大学学报 37 99
Ma Y S, Liu Z G, Wen Y H, Ma L, Zhang J B 2013 J. Beijing Jiaotong Univ. 37 99
[11] Peng K S, Gao G Q 2016 2016 IEEE International Conference on High Voltage Engineering And Application (Ichve) Chengdu, China, September 19−22, 2016 pp1−4
[12] 胡艳, 董丙杰, 周培勇, 陈光雄 2015 润滑与密封 40 66
Hu Y, Dong B J, Zhou P Y, Chen G X 2015 Lubr. Eng. 40 66
[13] Wu G N, G Z, Gao G Q, Hao J, Zhu G Y 2015 High Volt. Eng. 41 3531 [吴广宁, 古圳, 高国强, 郝静, 朱光亚 2015 高电压技术 41 3531]
Wu G N, G Z, Gao G Q, Hao J, Zhu G Y 2015 High Volt. Eng. 41 3531
[14] Wang Z Y, Guo F Y, Wang X L, Zhang Y L, Wang B W, Yan X M 2015 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm) San Diego, CA, USA, October 11−14, 2015 p256
[15] Zhang Y Y, Zhang Y Z, Du S M, Song C F, Yang Z H, Shangguan B 2017 Tribol. Int. 123 256
[16] Zhang Y Y, Zhang Y Z, Song C F 2018 Materials 11 796
Google Scholar
[17] 陈旭坤, 曹保江, 刘耀银, 高国强, 吴广宁 2016 高电压技术 42 3593
Chen X K, Cao B J, Liu Y Y, Gao G Q, Wu G N 2016 High Volt. Eng. 42 3593
[18] Xu Z L, Gao G Q, Wei W F, Yang Z F, Xie W H, Dong K L, Wu G N 2021 High Volt. 7 369
[19] Wang Q S, Gao G Q, Fu R, Chen J H, Qian P Y, Wang H, Wu G N 2025 Wear 572−573 205970
[20] 李含欣, 季德惠, 沈明学, 肖叶龙, 赵火平, 刘新龙, 熊光耀 2022 摩擦学学报 42 709
Li H X, Ji D H, Shen M X, Xiao J L, Zhao H P, Liu X L, Xiong G Y 2022 Tribology 42 709
[21] Yao Y M, Zhou N, Mei G M, Zhang W H 2020 Shock Vib. 2020 887609
[22] Collina A, Facchinetti A, Fossati F, Resta F 2005 Proceedings of the 44th IEEE Conference on Decision and Control Seville, Spain, December 15−15, 2005 pp4602−4609
[23] Taran M F, Rodriguezayerbe P, Olaru S, Ticlea A 2013 17th International Conference on System Theory, Control and Computing (ICSTCC) Sinaia, Romania, October 11−13, 2013 p527
[24] Nie Z Q, Ren Z L, Lin D, Zhang G Q 2017 IEEE Holm Conference on Electrical Contacts Denver, CO, USA September 10−13, 2017 pp194
[25] Tu C J, Chen Z H, Xia J T 2009 Tribol. Int. 42 995
Google Scholar
[26] Deng C Y, Yin J, Zhang H B, Xiong X, Wang P, Sun M 2017 Tribol. Int. 116 84
Google Scholar
[27] Wang P, Xie F M Y, Wexler D, Yin J, Zhang H B, Zhu H T 2023 Tribol. Int. 185 108483
Google Scholar
[28] Midya S, Bormann D, Schütte T, Thottappillil R 2011 IEEE Trans. Electromagn. Compat. 53 18
Google Scholar
[29] Lu H D, Zhu F, Liu Q X, Li X, Tang Y T, Qiu R Q 2019 IEEE Trans. Electromagn. Compat. 61 361
Google Scholar
[30] Tang Y T, Zhu F, Chen Y Y 2021 Appl. Comput. Electromagn. Soc. J. 36 205
Google Scholar
[31] Yang Z F, Huang C, Luo Y F, Huang Z W, Xia L Y, Zhang H, Zhou S G, Dong K L, Wei W F 2025 Plasma Sci. Technol. 27 59
[32] Andrea M 2023 Energies 16 1465
Google Scholar
[33] 宋冬冬, 程林, 林志法, 杜海江 2018 高电压技术 44 932
Song D D, Cheng L, Lin Z F, Du H J 2018 High Volt. Eng. 44 932
[34] 吴积钦 2008 电气化铁道 2 26
Wu J Q 2008 Electr. Rail. 2 26
[35] 朱光亚, 吴广宁, 高国强, 古圳 2016 高电压技术 42 642
Zhu G Y, Wu G N, Gao G Q, Gu Z 2016 High Volt. Eng. 42 642
[36] 潘子晗, 陈仙辉, 王城, 夏维东 2021 物理学报 70 085201
Google Scholar
Pan Z H, Chen X H, Wang C, Xia W D 2021 Acta Phys. Sin. 70 085201
Google Scholar
[37] 汪冠宇, 张博雅, 刘伟, 王雯, 李兴文 2025 电工技术学报 40 5626
Wang G Y, Zhang B Y, Liu W, Wang W, Li X W 2025 Trans. China Electrotech. Soc. 40 5626
[38] 王伟宗, 吴翊, 荣命哲, 杨飞 2012 物理学报 61 105201
Google Scholar
Wang W Z, Wu Y, Rong M Z, Yang F 2012 Acta Phys. Sin. 61 105201
Google Scholar
[39] 刘志伟, 陈少昆, 李成坤, 朱银龙, 高晋峰 2020 电器与能效管理技术 2 25
Liu Z W, Chen S K, Li C K, Zhu Y L, Gao J F 2020 Low Volt. Apparat. 2 25
[40] Dong K L, Yang Z F, Luo Y F, Ma Y G, Qian P Y, Wei W F 2024 Phys. Scripta 99 075036
Google Scholar
[41] Zhong L L, Wang X H, Cressault Y, Teulet P, Rong M Z 2016 Phys. Plasmas 23 093514
Google Scholar
[42] Tang B, Yang Z F, Li Z, Wei W F, Xia L Y, Li Z, Li P F, Wu G N 2025 Talanta 292 127927
Google Scholar
[43] Xie W H, Wu G N, Yang Z F, She P P, Wang H, Zuo H Z, Wei W F, Gao G Q, Tu C J 2021 High Volt. 6 674
Google Scholar
[44] Xu Z L, Gao G Q, Qian P Y, Xiao S, Wei W F, Yang Z F, Dong K L, Ma Y G, Wu G N 2023 Chin. Phys. B 32 493
[45] Gao G Q, Fu R, Wang Q S, Chen J H, Qian P Y, Zeng J J, Weng X, Li H Y, Yang Z F, Wang H, Wu G N 2025 Friction
[46] 王万岗, 吴广宁, 高国强, 王波, 崔易, 刘东来 2012 铁道学报 34 22
Wang W G, Wu G N, Gao G Q, Wang B, Cui Y, Liu D L 2012 J. China Rail. Soc. 34 22
[47] Qian P Y, Gao G Q, Li H Y, Wu G N, Zhou C F, Li Z, Wang Q S, Tang B, Hong Wang 2025 Eng. Fail. Anal. 178 109714
Google Scholar
[48] Lin F, Wang X F, Yang Z P, Sun H, Liu W Z, Hao R X, Jiao J H, Jin Yu 2017 Proceed. Instit. Mech. Eng. t F: J. Rail 231 185
Google Scholar
[49] Qian P Y, Gao G Q, Dong K L, Wang Q S, Peng W, Ma Y G, Zhou C F, Chen S J, Yang Z F, Xiao S, Wu G N 2023 J. Phys. D: Appl. Phys. 56 415205
Google Scholar
[50] Yan Z F, Huang Z W, Pan L K, Huang C, Xing T, Fu R, Zhang H, Wei W F, Wu G N 2024 Tribol. Int. 198 109925
Google Scholar
[51] Zhou H Y, Duan F C, Liu Z G, Chen L, Song Y, Zhang Y X 2022 IET Electr. Syst. Transp. 12 128
Google Scholar
[52] Mei G M, Fu W N, Chen G X, Zhang W H 2020 Wear 452−453 203275
[53] Midya S, Bormann D, Larsson A, Schutte T, Thottappillil R 2008 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, MI, USA, August 18−22, 2008 pp1−6
[54] Gao G Q, Qian P Y, Xu Z L, Dong K L, Wang Q S, Peng W, Liu Y X, Ma Y G, Xiao S, Huang G Z, Wu G N 2022 Phys. Plasmas 30 053502
Google Scholar
[55] 雷栋, 张婷婷, 段绪伟, 高国强, 魏文赋, 吴广宁 2019 铁道学报 41 50
Lei D, Zhang T T, Duan X W, Gao G Q, Wei W F, Wu G N 2019 J. China Rail. Soc. 41 50
[56] Bormann D, Midya S, Thottappillil R 2007 18th International Zurich Symposium on Electromagnetic Compatibility Munich, Germany, September 24−28, 2007 p369
[57] Gao G Q, Zhang T T, Wei W F, Hu Y, Wu G N, Zhou N 2018 Proceed. Instit. Mech. Eng. t F: J. Rail 232 1731
Google Scholar
[58] 郭凤仪, 周奇, 王智勇, 李茁恒, 籍欣欣 2019 电子测量与仪器学报 31 178
Guo F Y, Zhou Q, Wang Z Y, Li Z H, Ji X X 2019 J. Electr. Meas. Instrum. 31 178
[59] Midya S, Bormann D, Larsson A, Schutte T, Thottappillil R 2008 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, MI, USA, August 18−22, 2008 pp1−6
[60] 金梦哲, 刘尚合, 邢彤, 杨才智, 刘卫东, 方庆园, 胡曼 2022 电力自动化设备 42 177
Jin M Z, Liu S H, Xing T, Yang C Z, Liu W D, Fang Q Y, Hu M 2022 Electr. Power Autom. Equip. 42 177
[61] Yang H J, Chen G X, Gao G Q, Wu G N, Zhang W H 2015 Wear 332 949
[62] Zhang Y Y, Li C H, Pang X J, Song C F, Ni F, Zhang Y Z 2021 Wear 477 203809
Google Scholar
[63] 周虹屹, 刘志刚, 熊嘉铭, 徐钊, 邓云川 2023 交通运输工程学报 23 77
Zhou H Y, Liu Z G, Xiong J M, Xu Z, Deng Y C 2023 J. Traffic Transp. Eng. 23 77
[64] Zhang H J, Sun L M, Zhang Y Z, Bao S G 2014 Tribol. Trans. 57 1157
Google Scholar
[65] Xiong X Z, Tu C J, Chen D, Zhang J Q, Chen J H 2014 Tribol. Lett. 53 293
Google Scholar
[66] Yang H J, Yang D S, Mei G M, Cai C, Deng, X Q, Yang Y 2023 Wear 522 204718
Google Scholar
[67] 刘新龙, 周朝伟, 王冬云, 周新建, 胡明捷, 关欣, 张武略, 郑伊亭, 高明生, 杨文斌, 肖乾 2024 摩擦学学报(中英文) 44 189
Liu X L, Zhou C W, Wang D Y, Zhou X J, Hu M J, Guan X, Zhang W L, Zheng Y T, Gao M S, Yang W B, Xiao Q 2024 Tribology 44 189
[68] Pan L K, Yang C Z, Xing T, Yu Q 2025 Lubricants 13 87
Google Scholar
[69] Gao G Q, Xu P, Wei W F, Yang Z F, Wu G N 2018 Proceedings of 2018 29th International Conference On Electrical Contacts and 64th IEEE Holm Conference on Electrical Contacts Albuquerque, NM, USA, October 14−18, 2018 pp1−5
[70] Ozgun S, David F, Adam B 2021 IEEE Trans. Power Deliver. 36 3074
Google Scholar
[71] Yao Y M, Zou D, Wang J W, Zhou N, Zhang W H 2020 Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering (Vol. 1) (Cham: Springer) p189
[72] 蒋兴良, 吴海涛, 王涵, 郭裕钧 2019 高电压技术 45 2596
Jiang X L, Wu H T, Wang H, Guo Y J 2019 High Voltage Engineering 45 2596
[73] Guo L, Li Y L, Yang J, Yu W Y IEEE International Conference on Power System Technology (POWERCON) Wollongong, NSW, Australia, September 28−October 01, 2016 pp1−6
[74] Li Z, Wu G N, Huang G Z, Guo Y J, Zhu H Y 2025 IEEE Trans. Transp. Electr. 11 1189
Google Scholar
[75] 王英, 刘志刚, 高仕斌 2016 电力系统及其自动化学报 28 5
Wang Y, Liu Z G, Gao S B 2016 Proceed. CSU-EPSA 28 5
[76] 籍欣欣, 王智勇, 方志朋 2019 电子测量与仪器学报 31 47
Ji X X, Wang Z Y, Fang Z P 2019 J. Electr. Meas. Instrum. 31 47
[77] 胡绳荪, 孟英谦, 鲍家铭, 孙栋 2004 焊接学报 25 5
Hu S S, Meng Y Q, Bao J M, Sun D 2004 Trans. China Weld. Institut. 25 5
[78] Huang M, Yang B, Rong Y X, Zhao L, Xiao S N 2023 Tribol. Trans. 66 953
Google Scholar
[79] 曾子毅, 何泉鑫, 陈光雄, 赵鹏鹏, 董丙杰 2024 润滑与密封 49 98
Zeng Z Y, He Q X, Chen G X, Zhao P P, Dong B J 2024 Lubr. Eng. 49 98
[80] Shen M X, Ji D H, Hu Q, Xiao L, Li Q P 2024 Sci. China(Technol. Sci. ) 67 2537
[81] Wang H, Gao G Q, Deng L, Li X N, Wang X, Wang Q S, Wu G N 2023 Coatings 13 42
[82] Pisano A, Usai E 2004 Automatica 40 1525
Google Scholar
[83] Sanchez-Rebollo C, Jimenez-Octavio J R, Carnicero A 2013 Vehicle Syst. Dyn. 51 554
Google Scholar
[84] 杨岗, 孔国伟, 沈鑫 2024 机车电传动 6 163
Yang G, Kong G W, Shen X 2024 Electr. Drive Locomot. 6 163
[85] Calvo H A, Sanz B J D D, Gomez F J, Badolato M A 2021 Int. J. Sim. Model. 20 315
Google Scholar
[86] Zhang H, Wei W F, Pan L K, Yang Z F, Huang G Z, Liu Y X, Chen X, Yang Z Q, Wu G N 2024 Chin. J. Electr. Eng. 10 70
Google Scholar
[87] 涂川俊, 陈振华, 陈鼎, 严红革, 何凤亿 2008 中国有色金属学会会刊: 英文版 18 1157
Google Scholar
Tu C J, Chen Z H, Chen D, Yan H G, He F Y 2008 Trans. Nonferr. Metals Soc. China 18 1157
Google Scholar
[88] Wang P, Deng G Y, Zhang H B, Yin J, Xiong X, Zhang X, Zhu H T 2019 J. Mater. Sci. 54 13557
Google Scholar
[89] Wang P, Song H, Li K, Guo Y G, Deng C Y, Deng G Y, Zhu H T 2024 Tribol. Int. 192 109224
Google Scholar
[90] 黄晓晨, 凤仪, 钱刚, 葛金龙, 张现峰, 王传虎 2020 稀有金属材料与工程 49 34
Huang X C, Feng Y, Qian G, Ge J L, Zhang X F, Wang C H 2020 Rare Metal Mater. Eng. 49 34
[91] Sun J F, Yu J 2017 IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society Beijing, China, October 29- November 01, 2017 p7046
[92] Bartelt R, Heising C, Staudt V, Steimel A Badajoz, Spain, May 20−22, 2009 p217
[93] Zou D D, Wang M Y, Hu P Z, Cui C 2020 AIP Adv. 10 125029
Google Scholar
[94] Plesca A 2014 Int. J. Electr. Power Energy Syst. 57 212
Google Scholar
[95] 李权, 佘鹏鹏, 母婷佑, 鲁超 2020 真空科学与技术学报 40 1064
Li Q, She P P, Mu T Y, Lu C 2020 Chin. J. Vacuum Sci. Technol. 40 1064
[96] Kuo M T, Lo W Y 2014 IEEE Trans. Ind. Appl. 50 2891
Google Scholar
[97] Dong K L, Wu G N, Qian P Y, Ma Y G, Luo Y F, Yang Z F 2024 IEEE Trans. Transp. Electr. 10 1706
Google Scholar
[98] BESSIS B, MESSAAD M, KHORlEZ H. 2018 Electrical Engineering 100 2737
Google Scholar
[99] 胡建红, 陈敬超, 李强 2004 电工材料 01 38
Hu J H, Chen J C, Li Q 2004 Electr. Eng. Mater. 01 38
[100] 肖嵩, 曹野, 吴广宁, 高国强, 郭裕钧, 张血琴 2024 中国电机工程学报 44 4682
Xiao S, Cao Y, Wu G N, Gao G Q, Guo Y J, Zhang X Q 2024 Chin. Soc. Elec. Eng. 44 4682
计量
- 文章访问数: 123
- PDF下载量: 7
- 被引次数: 0








下载: