搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速铁路弓网电弧研究进展: 影响因素与防治方法

吴广宁 钱鹏宇 刘汶佶 高国强 李红艳

引用本文:
Citation:

高速铁路弓网电弧研究进展: 影响因素与防治方法

吴广宁, 钱鹏宇, 刘汶佶, 高国强, 李红艳

Research progress of high-speed railway pantograph arc: influencing factors and prevention methods

WU Guangning, QIAN Pengyu, LIU Wenji, GAO Guoqiang, LI Hongyan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 弓网滑动电接触是高速列车获取能量的唯一途径. 随列车速度、牵引功率提升以及在复杂多变环境中运行, 弓网电弧发生率提高、物性参数改变、危害增加, 严重威胁高铁安全. 本文系统综述了弓网电弧研究进展, 梳理了弓网电弧物理特性、试验及仿真研究方法, 重点分析了运行参数与环境条件对弓网电弧的影响规律及机理, 归纳了防治策略并探讨了电弧能量利用等新方向. 现有工作充分研究了运行参数对弓网电弧危害特性的影响, 但对弓网电弧物性参数及演化机理的研究较少, 缺乏对覆冰等特殊工况下弓网电弧现象的研究; 且现有弓网电弧防护手段需针对复杂环境工况进行改进, 以满足日益增长的弓网电弧防护需求. 基于综述提出两点未来展望: 1)要厘清特殊环境弓网电弧物性参数, 探明“环境工况-物性参数-电弧行为”关联机制, 为精准预测提供基础; 2)要从“源头抑制-界面防护-过程干预”出发, 建立弓网电弧高效防治体系. 本文旨在为中国高速铁路弓网系统的可靠受流与电弧防治提供理论参考与工程借鉴.
    The pantograph-catenary system (PCS) serves as the exclusive means of power supply for high-speed trains.As train speeds increase, traction power rises, and operations take place in complex and variable environments, pantograph arcing has become more frequent. This phenomenon is accompanied by changes in physical properties and increased hazards, which seriously threaten the safety of high-speed railways. This paper systematically reviews the recent researches on pantograph arc, and outlines physical characteristics, experimental techniques, and simulation methods. The study focuses on analyzing the effects and mechanisms of operating parameters and environmental conditions on pantograph arc, summarizes prevention strategies, and explores applications such as arc energy utilization. Existing research has sufficiently examined how operational parameters affect arc hazards, yet studies on arc physical properties and evolution mechanisms remain limited, particularly regarding special conditions such as icing. Current protection methods also require adaptation to complex environments to meet the growing demands for arc management. Two future research priorities are proposed: first, clarifying the physical properties of an arc under special environments and establishing the correlation among “environmental conditions, an arc’s physical properties, and its behavior” to enable accurate prediction; second, developing an efficient arc prevention system through the approach of “source suppression, interface protection, and process intervention”. This review aims to provide theoretical and practical guidance for realizing reliable current collection and effective arc control in high-speed railway PCS in China.
  • 图 1  高速列车弓网系统与弓网电弧 (a) 高速列车弓网系统; (b) 弓网电弧的危害; (c) 弓网电弧的特点

    Fig. 1.  Pantograph-catenary system (PCS) and pantograph arc of high-speed train: (a) PCS for high-speed trains; (b) hazard of pantograph arc; (c) characteristics of pantograph arc.

    图 2  弓网电弧物性参数[41] (a) 质量密度; (b) 比焓; (c) 电子比定压热容; (d) 重粒子比定压热容; (e) 电导率; (f) 热导率; (g) 黏度系数

    Fig. 2.  Physical parameters of pantograph arc[41]: (a) Mass density; (b) specific enthalpy; (c) electronic specific heat; (d) heavy particle specific heat; (e) electrical conductivity; (f) thermal conductivity; (g) viscosity coefficient.

    图 3  弓网电弧试验平台的发展 (a) 升降弓电弧试验台[43]; (b) 盘-销式弓网载流摩擦试验台[45]; (c) 高速弓网试验台[46]; (d) 弓网电弧试验台[47]

    Fig. 3.  Development of pantograph arc test platform: (a) Static arc test platform[43]; (b) pantograph-catenary current-carrying friction test platform[45]; (c) high-speed pantograph-catenary test platform[46]; (d) pantograph arc test platform[47].

    图 4  耦合电弧模型的牵引供电网络[48]

    Fig. 4.  Traction power supply network model coupled with arc black-box model[48].

    图 5  MHD电弧模型与链式电弧模型 (a) MHD电弧温度分布仿真[18]; (b) 电弧链式模型[49]

    Fig. 5.  MHD arc model and arc chain model: (a) Arc temperature distribution based on MHD model[18]; (b) pantograph arc chain model[49].

    图 6  接触压力与牵引电流对弓网电弧放电率的影响[51] (a) 接触压力对放电率的影响; (b) 牵引电流对放电率的影响

    Fig. 6.  Influence of contact force and current on pantograph arc rate[51]: (a) Influence of contact force on arc rate; (b) influence of current on arc rate.

    图 7  接触压力波动对弓网电弧形态特性的影响[53] (a) 接触力波动幅值对弓网电弧的影响; (b) 接触力波动频率对弓网电弧的影响

    Fig. 7.  Influence of contact force on arc morphological characteristics[53]: (a) Influence of contact force fluctuation amplitude on arc; (b) influence of contact force fluctuation frequency on arc.

    图 8  弓网电弧发展演化过程[54]

    Fig. 8.  Evolution process of the pantograph arc[54].

    图 9  高铁运行参数对弓网电弧特性的影响 (a) 列车速度对弓网电弧特性的影响[10]; (b) 电流特征对弓网电弧能量的影响[11]; (c) 列车速度对电弧功率与持续时间的影响[57]

    Fig. 9.  Influence of high-speed train operating conditions on pantograph arc characteristics: (a) Influence of train speed on arc characteristics[10]; (b) influence of current characteristics on arc energy[11]; (c) influence of speed on arc power and duration[57].

    图 10  高铁运行参数对弓网电弧电磁干扰的影响 (a) 接触力对电弧电磁干扰的影响[59,64]; (b) 运行车速对电弧电磁干扰的影响[60]; (c) 牵引电流对电弧电磁干扰的影响[60]

    Fig. 10.  Influence of high-speed train operating conditions on arc electromagnetic interference (a) Effect of contact force on arc electromagnetic interference[59,64]; (b) effect of vehicle speed on arc electromagnetic interference[60]; (c) effect of traction current on arc electromagnetic interference[60].

    图 11  高铁运行参数对电弧烧蚀行为的影响 (a) 接触力波动对电弧发生率的影响[15]; (b) 电弧发生率对侵蚀量的影响[47]; (c) 车速对电弧烧蚀面积的影响[69]

    Fig. 11.  Influence of high-speed train operating conditions on arc ablation behavior: (a) Effect of contact force fluctuation on arcing incidence[15]; (b) effect of arc rate on erosion[47]; (c) effect of vehicle speed on arc ablation area[69].

    图 12  覆冰对弓网接触状态的影响 (a) 覆冰对接触力的影响[71]; (b) 覆冰对电弧导致的接触线表面发热的影响[73]

    Fig. 12.  Influence of ice on PCS contact condition: (a) Influence of ice on contact force[71]; (b) effect of icing on surface heating of the contact line caused by arcing[73].

    图 13  大气环境对电弧的影响[18] (a) 气流对弧柱弧根的影响; (b) 气压对弧柱弧根的影响; (c) 气流对电弧运动速度的影响; (d) 气压对电弧运动速度的影响

    Fig. 13.  Influence of atmospheric environment on arcing[18]: (a) Effect of airflow on arc column and root; (b) effect of air pressure on arc column and root; (c) effect of airflow on arc velocity; (d) effect of air pressure on arc velocity.

    图 14  潮湿降雨环境对电弧的影响 (a) 降雨量对电弧电压的影响[76]; (b) 降雨量对电弧形态的影响[76]; (c) 湿度对弓网电弧特性的影响[20]; (d) 雨水酸性对电弧放电频次的影响[19]

    Fig. 14.  Influence of humid and rainy environment conditions on arcing: (a) Effect of rainfall on arc voltage[76]; (b) effect of rainfall on arc morphology[76]; (c) effect of humidity on arc characteristics[20]; (d) effect of rainwater acidity on arc discharge frequency[19].

    图 15  弓网结构 (a) 受电弓结构; (b) 接触网结构

    Fig. 15.  Structure of PCS: (a) Pantograph structure; (b) catenary structure.

    表 1  弓网电弧仿真模型

    Table 1.  Pantograph arc simulation model.

    模型名称仿真目标不足
    柯西-梅尔模型[33]电弧电压、电流等外部参数难以描述电弧局部及形态变化对外部参数带来的扰动
    磁流体动力学(MHD)模型[18]电弧形态、温度、流场分布等宏观发展特征及物理特性计算量巨大, 仿真耗时长, 难以模拟弓网电弧发展全过程
    链式电弧模型[49]电弧形态、等效受力与发展演化全过程难以追踪电弧温度、流场的动态变化, 精细程度低于MHD模型
    神经网络预测模型[1,50]电弧特征参数及危害预测对训练集数据的质量要求极高
    下载: 导出CSV

    表 2  受电弓滑板材料性能参数表

    Table 2.  Material parameters of pantograph slider.

    碳滑板及其材料名称密度
    /(g·cm–3)
    冲击强度
    /(kJ·m–2)
    电阻率
    /(μΩ·m)
    RMPCS[87]3.857.19.5
    PyC-Cuf/C[88]1.965.88
    C/C-Cu[27]2.248.616.27
    C/C-Cuf[27]2.13256.3
    Cf/Cu/C[26]2.0826.71.67
    C/Cu[26]3.5913.312.6
    Cuf/Cf/C-35
    (碳纤维含量35%)[89]
    1.9213.58.2
    Cuf/Cf/C-40
    (碳纤维含量40%)[89]
    1.8617.97.8
    Cuf/Cf/C-45
    (碳纤维含量45%)[89]
    1.9622.17.5
    纯碳滑板[89]1.67840
    下载: 导出CSV
  • [1]

    Huang G Z, Wu G N, Yang Z F, Chen X, Wei W F 2023 Appl. Energy 333 120608Google Scholar

    [2]

    Yang Z F, Xu P, Wei W F, Gao G Q, Zhou N, Wu G N 2020 IEEE Trans. Plasma Sci. 48 2822Google Scholar

    [3]

    Li Z, Huang G Z, Wu G N, Gao G Q, Yang Z F, Zhu H Y, Gan G W 2024 Cold Reg. Sci. Technol. 227 104306Google Scholar

    [4]

    Luo Y F, Yang Z F, Dong K L, Qian P Y, Xia L Y, Huang C, Zhang H, Wu G N, Wei W F 2024 IEEE Trans. Transp. Electrif. 10 6707Google Scholar

    [5]

    张鲲, 张扬, 查晓明, 熊一, 彭光强, 樊友平 2012 物理学报 61 164

    Zhang K, Zhang Y, Zha X M, Xiong Y, Peng G Q, Fan Y P 2012 Acta Phys. Sin. 61 164

    [6]

    Wu G N, Dong K L, Xu Z L, Xiao S, Wei W F, Chen H, Li J, Huang Z L, Li J W, Gao G Q, Kang G Z, Tu C J, Huang X Y 2022 Railway Eng. Sci. 30 437Google Scholar

    [7]

    李兴文, 贾胜利, 张博雅 2020 高电压技术 46 757

    Li X W, Jia S L, Zhang B Y 2020 High Volt. Eng. 46 757

    [8]

    陈树君, 徐斌, 蒋凡 2017 金属学报 53 631

    Chen S J, Xu B, Jiang F 2017 Acta Metall. Sin. 53 631

    [9]

    王晓蕾, 蔡汉, 赵贤根, 刘 刚, 廖民传, 屈路 2020 高电压技术 46 4300

    Wang X L, Cai H, Zhao X G, Liu G, Liao M C, Qu L 2020 High Volt. Eng. 46 4300

    [10]

    马云双, 刘志刚, 闻映红, 马岚, 张金宝 2013 北京交通大学学报 37 99

    Ma Y S, Liu Z G, Wen Y H, Ma L, Zhang J B 2013 J. Beijing Jiaotong Univ. 37 99

    [11]

    Peng K S, Gao G Q 2016 2016 IEEE International Conference on High Voltage Engineering And Application (Ichve) Chengdu, China, September 19−22, 2016 pp1−4

    [12]

    胡艳, 董丙杰, 周培勇, 陈光雄 2015 润滑与密封 40 66

    Hu Y, Dong B J, Zhou P Y, Chen G X 2015 Lubr. Eng. 40 66

    [13]

    Wu G N, G Z, Gao G Q, Hao J, Zhu G Y 2015 High Volt. Eng. 41 3531 [吴广宁, 古圳, 高国强, 郝静, 朱光亚 2015 高电压技术 41 3531]

    Wu G N, G Z, Gao G Q, Hao J, Zhu G Y 2015 High Volt. Eng. 41 3531

    [14]

    Wang Z Y, Guo F Y, Wang X L, Zhang Y L, Wang B W, Yan X M 2015 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm) San Diego, CA, USA, October 11−14, 2015 p256

    [15]

    Zhang Y Y, Zhang Y Z, Du S M, Song C F, Yang Z H, Shangguan B 2017 Tribol. Int. 123 256

    [16]

    Zhang Y Y, Zhang Y Z, Song C F 2018 Materials 11 796Google Scholar

    [17]

    陈旭坤, 曹保江, 刘耀银, 高国强, 吴广宁 2016 高电压技术 42 3593

    Chen X K, Cao B J, Liu Y Y, Gao G Q, Wu G N 2016 High Volt. Eng. 42 3593

    [18]

    Xu Z L, Gao G Q, Wei W F, Yang Z F, Xie W H, Dong K L, Wu G N 2021 High Volt. 7 369

    [19]

    Wang Q S, Gao G Q, Fu R, Chen J H, Qian P Y, Wang H, Wu G N 2025 Wear 572−573 205970

    [20]

    李含欣, 季德惠, 沈明学, 肖叶龙, 赵火平, 刘新龙, 熊光耀 2022 摩擦学学报 42 709

    Li H X, Ji D H, Shen M X, Xiao J L, Zhao H P, Liu X L, Xiong G Y 2022 Tribology 42 709

    [21]

    Yao Y M, Zhou N, Mei G M, Zhang W H 2020 Shock Vib. 2020 887609

    [22]

    Collina A, Facchinetti A, Fossati F, Resta F 2005 Proceedings of the 44th IEEE Conference on Decision and Control Seville, Spain, December 15−15, 2005 pp4602−4609

    [23]

    Taran M F, Rodriguezayerbe P, Olaru S, Ticlea A 2013 17th International Conference on System Theory, Control and Computing (ICSTCC) Sinaia, Romania, October 11−13, 2013 p527

    [24]

    Nie Z Q, Ren Z L, Lin D, Zhang G Q 2017 IEEE Holm Conference on Electrical Contacts Denver, CO, USA September 10−13, 2017 pp194

    [25]

    Tu C J, Chen Z H, Xia J T 2009 Tribol. Int. 42 995Google Scholar

    [26]

    Deng C Y, Yin J, Zhang H B, Xiong X, Wang P, Sun M 2017 Tribol. Int. 116 84Google Scholar

    [27]

    Wang P, Xie F M Y, Wexler D, Yin J, Zhang H B, Zhu H T 2023 Tribol. Int. 185 108483Google Scholar

    [28]

    Midya S, Bormann D, Schütte T, Thottappillil R 2011 IEEE Trans. Electromagn. Compat. 53 18Google Scholar

    [29]

    Lu H D, Zhu F, Liu Q X, Li X, Tang Y T, Qiu R Q 2019 IEEE Trans. Electromagn. Compat. 61 361Google Scholar

    [30]

    Tang Y T, Zhu F, Chen Y Y 2021 Appl. Comput. Electromagn. Soc. J. 36 205Google Scholar

    [31]

    Yang Z F, Huang C, Luo Y F, Huang Z W, Xia L Y, Zhang H, Zhou S G, Dong K L, Wei W F 2025 Plasma Sci. Technol. 27 59

    [32]

    Andrea M 2023 Energies 16 1465Google Scholar

    [33]

    宋冬冬, 程林, 林志法, 杜海江 2018 高电压技术 44 932

    Song D D, Cheng L, Lin Z F, Du H J 2018 High Volt. Eng. 44 932

    [34]

    吴积钦 2008 电气化铁道 2 26

    Wu J Q 2008 Electr. Rail. 2 26

    [35]

    朱光亚, 吴广宁, 高国强, 古圳 2016 高电压技术 42 642

    Zhu G Y, Wu G N, Gao G Q, Gu Z 2016 High Volt. Eng. 42 642

    [36]

    潘子晗, 陈仙辉, 王城, 夏维东 2021 物理学报 70 085201Google Scholar

    Pan Z H, Chen X H, Wang C, Xia W D 2021 Acta Phys. Sin. 70 085201Google Scholar

    [37]

    汪冠宇, 张博雅, 刘伟, 王雯, 李兴文 2025 电工技术学报 40 5626

    Wang G Y, Zhang B Y, Liu W, Wang W, Li X W 2025 Trans. China Electrotech. Soc. 40 5626

    [38]

    王伟宗, 吴翊, 荣命哲, 杨飞 2012 物理学报 61 105201Google Scholar

    Wang W Z, Wu Y, Rong M Z, Yang F 2012 Acta Phys. Sin. 61 105201Google Scholar

    [39]

    刘志伟, 陈少昆, 李成坤, 朱银龙, 高晋峰 2020 电器与能效管理技术 2 25

    Liu Z W, Chen S K, Li C K, Zhu Y L, Gao J F 2020 Low Volt. Apparat. 2 25

    [40]

    Dong K L, Yang Z F, Luo Y F, Ma Y G, Qian P Y, Wei W F 2024 Phys. Scripta 99 075036Google Scholar

    [41]

    Zhong L L, Wang X H, Cressault Y, Teulet P, Rong M Z 2016 Phys. Plasmas 23 093514Google Scholar

    [42]

    Tang B, Yang Z F, Li Z, Wei W F, Xia L Y, Li Z, Li P F, Wu G N 2025 Talanta 292 127927Google Scholar

    [43]

    Xie W H, Wu G N, Yang Z F, She P P, Wang H, Zuo H Z, Wei W F, Gao G Q, Tu C J 2021 High Volt. 6 674Google Scholar

    [44]

    Xu Z L, Gao G Q, Qian P Y, Xiao S, Wei W F, Yang Z F, Dong K L, Ma Y G, Wu G N 2023 Chin. Phys. B 32 493

    [45]

    Gao G Q, Fu R, Wang Q S, Chen J H, Qian P Y, Zeng J J, Weng X, Li H Y, Yang Z F, Wang H, Wu G N 2025 Friction

    [46]

    王万岗, 吴广宁, 高国强, 王波, 崔易, 刘东来 2012 铁道学报 34 22

    Wang W G, Wu G N, Gao G Q, Wang B, Cui Y, Liu D L 2012 J. China Rail. Soc. 34 22

    [47]

    Qian P Y, Gao G Q, Li H Y, Wu G N, Zhou C F, Li Z, Wang Q S, Tang B, Hong Wang 2025 Eng. Fail. Anal. 178 109714Google Scholar

    [48]

    Lin F, Wang X F, Yang Z P, Sun H, Liu W Z, Hao R X, Jiao J H, Jin Yu 2017 Proceed. Instit. Mech. Eng. t F: J. Rail 231 185Google Scholar

    [49]

    Qian P Y, Gao G Q, Dong K L, Wang Q S, Peng W, Ma Y G, Zhou C F, Chen S J, Yang Z F, Xiao S, Wu G N 2023 J. Phys. D: Appl. Phys. 56 415205Google Scholar

    [50]

    Yan Z F, Huang Z W, Pan L K, Huang C, Xing T, Fu R, Zhang H, Wei W F, Wu G N 2024 Tribol. Int. 198 109925Google Scholar

    [51]

    Zhou H Y, Duan F C, Liu Z G, Chen L, Song Y, Zhang Y X 2022 IET Electr. Syst. Transp. 12 128Google Scholar

    [52]

    Mei G M, Fu W N, Chen G X, Zhang W H 2020 Wear 452−453 203275

    [53]

    Midya S, Bormann D, Larsson A, Schutte T, Thottappillil R 2008 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, MI, USA, August 18−22, 2008 pp1−6

    [54]

    Gao G Q, Qian P Y, Xu Z L, Dong K L, Wang Q S, Peng W, Liu Y X, Ma Y G, Xiao S, Huang G Z, Wu G N 2022 Phys. Plasmas 30 053502Google Scholar

    [55]

    雷栋, 张婷婷, 段绪伟, 高国强, 魏文赋, 吴广宁 2019 铁道学报 41 50

    Lei D, Zhang T T, Duan X W, Gao G Q, Wei W F, Wu G N 2019 J. China Rail. Soc. 41 50

    [56]

    Bormann D, Midya S, Thottappillil R 2007 18th International Zurich Symposium on Electromagnetic Compatibility Munich, Germany, September 24−28, 2007 p369

    [57]

    Gao G Q, Zhang T T, Wei W F, Hu Y, Wu G N, Zhou N 2018 Proceed. Instit. Mech. Eng. t F: J. Rail 232 1731Google Scholar

    [58]

    郭凤仪, 周奇, 王智勇, 李茁恒, 籍欣欣 2019 电子测量与仪器学报 31 178

    Guo F Y, Zhou Q, Wang Z Y, Li Z H, Ji X X 2019 J. Electr. Meas. Instrum. 31 178

    [59]

    Midya S, Bormann D, Larsson A, Schutte T, Thottappillil R 2008 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, MI, USA, August 18−22, 2008 pp1−6

    [60]

    金梦哲, 刘尚合, 邢彤, 杨才智, 刘卫东, 方庆园, 胡曼 2022 电力自动化设备 42 177

    Jin M Z, Liu S H, Xing T, Yang C Z, Liu W D, Fang Q Y, Hu M 2022 Electr. Power Autom. Equip. 42 177

    [61]

    Yang H J, Chen G X, Gao G Q, Wu G N, Zhang W H 2015 Wear 332 949

    [62]

    Zhang Y Y, Li C H, Pang X J, Song C F, Ni F, Zhang Y Z 2021 Wear 477 203809Google Scholar

    [63]

    周虹屹, 刘志刚, 熊嘉铭, 徐钊, 邓云川 2023 交通运输工程学报 23 77

    Zhou H Y, Liu Z G, Xiong J M, Xu Z, Deng Y C 2023 J. Traffic Transp. Eng. 23 77

    [64]

    Zhang H J, Sun L M, Zhang Y Z, Bao S G 2014 Tribol. Trans. 57 1157Google Scholar

    [65]

    Xiong X Z, Tu C J, Chen D, Zhang J Q, Chen J H 2014 Tribol. Lett. 53 293Google Scholar

    [66]

    Yang H J, Yang D S, Mei G M, Cai C, Deng, X Q, Yang Y 2023 Wear 522 204718Google Scholar

    [67]

    刘新龙, 周朝伟, 王冬云, 周新建, 胡明捷, 关欣, 张武略, 郑伊亭, 高明生, 杨文斌, 肖乾 2024 摩擦学学报(中英文) 44 189

    Liu X L, Zhou C W, Wang D Y, Zhou X J, Hu M J, Guan X, Zhang W L, Zheng Y T, Gao M S, Yang W B, Xiao Q 2024 Tribology 44 189

    [68]

    Pan L K, Yang C Z, Xing T, Yu Q 2025 Lubricants 13 87Google Scholar

    [69]

    Gao G Q, Xu P, Wei W F, Yang Z F, Wu G N 2018 Proceedings of 2018 29th International Conference On Electrical Contacts and 64th IEEE Holm Conference on Electrical Contacts Albuquerque, NM, USA, October 14−18, 2018 pp1−5

    [70]

    Ozgun S, David F, Adam B 2021 IEEE Trans. Power Deliver. 36 3074Google Scholar

    [71]

    Yao Y M, Zou D, Wang J W, Zhou N, Zhang W H 2020 Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering (Vol. 1) (Cham: Springer) p189

    [72]

    蒋兴良, 吴海涛, 王涵, 郭裕钧 2019 高电压技术 45 2596

    Jiang X L, Wu H T, Wang H, Guo Y J 2019 High Voltage Engineering 45 2596

    [73]

    Guo L, Li Y L, Yang J, Yu W Y IEEE International Conference on Power System Technology (POWERCON) Wollongong, NSW, Australia, September 28−October 01, 2016 pp1−6

    [74]

    Li Z, Wu G N, Huang G Z, Guo Y J, Zhu H Y 2025 IEEE Trans. Transp. Electr. 11 1189Google Scholar

    [75]

    王英, 刘志刚, 高仕斌 2016 电力系统及其自动化学报 28 5

    Wang Y, Liu Z G, Gao S B 2016 Proceed. CSU-EPSA 28 5

    [76]

    籍欣欣, 王智勇, 方志朋 2019 电子测量与仪器学报 31 47

    Ji X X, Wang Z Y, Fang Z P 2019 J. Electr. Meas. Instrum. 31 47

    [77]

    胡绳荪, 孟英谦, 鲍家铭, 孙栋 2004 焊接学报 25 5

    Hu S S, Meng Y Q, Bao J M, Sun D 2004 Trans. China Weld. Institut. 25 5

    [78]

    Huang M, Yang B, Rong Y X, Zhao L, Xiao S N 2023 Tribol. Trans. 66 953Google Scholar

    [79]

    曾子毅, 何泉鑫, 陈光雄, 赵鹏鹏, 董丙杰 2024 润滑与密封 49 98

    Zeng Z Y, He Q X, Chen G X, Zhao P P, Dong B J 2024 Lubr. Eng. 49 98

    [80]

    Shen M X, Ji D H, Hu Q, Xiao L, Li Q P 2024 Sci. China(Technol. Sci. ) 67 2537

    [81]

    Wang H, Gao G Q, Deng L, Li X N, Wang X, Wang Q S, Wu G N 2023 Coatings 13 42

    [82]

    Pisano A, Usai E 2004 Automatica 40 1525Google Scholar

    [83]

    Sanchez-Rebollo C, Jimenez-Octavio J R, Carnicero A 2013 Vehicle Syst. Dyn. 51 554Google Scholar

    [84]

    杨岗, 孔国伟, 沈鑫 2024 机车电传动 6 163

    Yang G, Kong G W, Shen X 2024 Electr. Drive Locomot. 6 163

    [85]

    Calvo H A, Sanz B J D D, Gomez F J, Badolato M A 2021 Int. J. Sim. Model. 20 315Google Scholar

    [86]

    Zhang H, Wei W F, Pan L K, Yang Z F, Huang G Z, Liu Y X, Chen X, Yang Z Q, Wu G N 2024 Chin. J. Electr. Eng. 10 70Google Scholar

    [87]

    涂川俊, 陈振华, 陈鼎, 严红革, 何凤亿 2008 中国有色金属学会会刊: 英文版 18 1157Google Scholar

    Tu C J, Chen Z H, Chen D, Yan H G, He F Y 2008 Trans. Nonferr. Metals Soc. China 18 1157Google Scholar

    [88]

    Wang P, Deng G Y, Zhang H B, Yin J, Xiong X, Zhang X, Zhu H T 2019 J. Mater. Sci. 54 13557Google Scholar

    [89]

    Wang P, Song H, Li K, Guo Y G, Deng C Y, Deng G Y, Zhu H T 2024 Tribol. Int. 192 109224Google Scholar

    [90]

    黄晓晨, 凤仪, 钱刚, 葛金龙, 张现峰, 王传虎 2020 稀有金属材料与工程 49 34

    Huang X C, Feng Y, Qian G, Ge J L, Zhang X F, Wang C H 2020 Rare Metal Mater. Eng. 49 34

    [91]

    Sun J F, Yu J 2017 IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society Beijing, China, October 29- November 01, 2017 p7046

    [92]

    Bartelt R, Heising C, Staudt V, Steimel A Badajoz, Spain, May 20−22, 2009 p217

    [93]

    Zou D D, Wang M Y, Hu P Z, Cui C 2020 AIP Adv. 10 125029Google Scholar

    [94]

    Plesca A 2014 Int. J. Electr. Power Energy Syst. 57 212Google Scholar

    [95]

    李权, 佘鹏鹏, 母婷佑, 鲁超 2020 真空科学与技术学报 40 1064

    Li Q, She P P, Mu T Y, Lu C 2020 Chin. J. Vacuum Sci. Technol. 40 1064

    [96]

    Kuo M T, Lo W Y 2014 IEEE Trans. Ind. Appl. 50 2891Google Scholar

    [97]

    Dong K L, Wu G N, Qian P Y, Ma Y G, Luo Y F, Yang Z F 2024 IEEE Trans. Transp. Electr. 10 1706Google Scholar

    [98]

    BESSIS B, MESSAAD M, KHORlEZ H. 2018 Electrical Engineering 100 2737Google Scholar

    [99]

    胡建红, 陈敬超, 李强 2004 电工材料 01 38

    Hu J H, Chen J C, Li Q 2004 Electr. Eng. Mater. 01 38

    [100]

    肖嵩, 曹野, 吴广宁, 高国强, 郭裕钧, 张血琴 2024 中国电机工程学报 44 4682

    Xiao S, Cao Y, Wu G N, Gao G Q, Guo Y J, Zhang X Q 2024 Chin. Soc. Elec. Eng. 44 4682

  • [1] 申开波, 刘英光, 李鑫, 李亨宣. 石墨烯纳米网中的声子干涉效应. 物理学报, doi: 10.7498/aps.72.20230361
    [2] 韩定定, 姚清清, 陈趣, 钱江海. 基于时变小世界模型的航空网优化评估. 物理学报, doi: 10.7498/aps.66.248901
    [3] 李彦霏, 李玉同, 朱保君, 袁大伟, 李芳, 张喆, 仲佳勇, 魏会冈, 裴晓星, 刘畅, 原晓霞, 赵家瑞, 韩波, 廖国前, 鲁欣, 华能, 朱宝强, 朱健强, 方智恒, 安红海, 黄秀光, 赵刚, 张杰. 强激光产生的强磁场及其对弓激波的影响. 物理学报, doi: 10.7498/aps.66.095202
    [4] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究. 物理学报, doi: 10.7498/aps.63.230502
    [5] 沈迪, 李建华, 张强, 朱瑞. 交织型层级复杂网. 物理学报, doi: 10.7498/aps.63.190201
    [6] 刘晓慧, 聂敏, 裴昌幸. 量子无线广域网构建与路由策略. 物理学报, doi: 10.7498/aps.62.200304
    [7] 刘向丽, 李赞, 胡易俗. 无线传感网中基于质心的高效坐标压缩算法. 物理学报, doi: 10.7498/aps.62.070201
    [8] 田立新, 贺莹环, 黄益. 一种新型二分网络类局域世界演化模型. 物理学报, doi: 10.7498/aps.61.228903
    [9] 李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声. 栅控电子枪中轮辐栅网截止放大系数的研究. 物理学报, doi: 10.7498/aps.61.078502
    [10] 万宝惠, 张鹏, 张晶, 狄增如, 樊瑛. 二分网上的靴襻渗流. 物理学报, doi: 10.7498/aps.61.166402
    [11] 吴文平, 郭雅芳, 汪越胜, 徐爽. 镍基单晶高温合金界面位错网在剪切载荷作用下的演化. 物理学报, doi: 10.7498/aps.60.056802
    [12] 尚慧琳. 时滞位移反馈对Helmholtz振子系统的分形侵蚀安全域的控制. 物理学报, doi: 10.7498/aps.60.070501
    [13] 张兴刚, 隆正文, 胡林. 颗粒体系中力分布的标量力网系综模型. 物理学报, doi: 10.7498/aps.58.90
    [14] 陈宏斌, 樊瑛, 方锦清, 狄增如. 二元随机网. 物理学报, doi: 10.7498/aps.58.1383
    [15] 谭江峡, 王杜鹃, 王 鑫, 王 茹, 蔡 勖. 与地理环境相关的中国铁路客运网拓扑结构. 物理学报, doi: 10.7498/aps.57.6771
    [16] 刘 斌, 金伟其, 董立泉. 热成像系统前置栅网结构的衍射效应分析. 物理学报, doi: 10.7498/aps.57.5578
    [17] 付印平, 高自友, 李克平. 固定闭塞系统下列车运行限速区段交通流特性分析. 物理学报, doi: 10.7498/aps.56.5165
    [18] 李 峰, 高自友, 李克平. 固定闭塞系统中列车流的特性分析. 物理学报, doi: 10.7498/aps.56.3158
    [19] 周华亮, 高自友, 李克平. 准移动闭塞系统的元胞自动机模型及列车延迟传播规律的研究. 物理学报, doi: 10.7498/aps.55.1706
    [20] 叶笑蓉, 曹佑安, 袁鸿武, 杨奇斌, 王元明. 三维空间子群网的推导. 物理学报, doi: 10.7498/aps.51.1087
计量
  • 文章访问数:  123
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 修回日期:  2025-10-23
  • 上网日期:  2025-11-10

/

返回文章
返回