搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸铋钠高压下结构演化与相变行为

王润基 房雷鸣 何瑞琦 冷浩杰 刘勇波 陈喜平 谢雷 冯秋 孙安苇 熊政伟 高志鹏

引用本文:
Citation:

钛酸铋钠高压下结构演化与相变行为

王润基, 房雷鸣, 何瑞琦, 冷浩杰, 刘勇波, 陈喜平, 谢雷, 冯秋, 孙安苇, 熊政伟, 高志鹏

Structural evolution and phase transition behavior of Na0.5Bi0.5TiO3 under high pressure

WANG Runji, FANG Leiming, HE Ruiqi, LENG Haojie, LIU Yongbo, CHEN Xiping, XIE Lei, FENG Qiu, SUN Anwei, XIONG Zhengwei, GAO Zhipeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 弛豫铁电体钛酸铋钠(Na0.5Bi0.5TiO3, NBT)具有优异的铁电性能, 被广泛认为是极具应用前景的无铅铁电材料. 深入阐明其在高压下的结构演化规律与相变机理, 对于推动这类环境友好型铁电材料的应用至关重要. 本研究结合原位高压中子衍射实验与第一性原理计算, 研究了NBT在高压下的结构演化规律. 高压中子衍射实验结果表明, NBT的常压相R3c相和高压相Pnma相的共存压力区间为1.1—4.6 GPa, 其体积模量分别为89.3 GPa和108.6 GPa. 通过分析压力诱导的微观结构演变, 本研究阐明了NBT高压相与常压相在微观结构特征上的差异及对体积模量的影响, 建立了高压下NBT的微观结构响应与宏观物理性能的内在联系. 获得的相关结论为无铅压电材料的高压性能调控提供了重要的实验依据与参考.
    Relaxor ferroelectric sodium bismuth titanate (Na0.5Bi0.5TiO3, NBT) exhibits outstanding ferroelectric characteristics and is widely recognized as a highly promising lead-free ferroelectric material. In order to further promote the application of this environmentally friendly ferroelectric material, it is crucial to gain a comprehensive understanding of its structural evolution and phase transition mechanism under high pressure. This study investigates the structural evolution of NBT under hydrostatic pressure up to 6.8 GPa by integrating in situ high-pressure neutron diffraction experiments with first-principles calculations. Based on high-pressure neutron diffraction experiments conducted at the China Mianyang Research Reactor (CMRR), Rietveld refinement analysis identifies a phase transition from the ambient-pressure R3c phase to the high-pressure Pnma phase in NBT, with a coexistence pressure range of 1.1–4.6 GPa. The bulk modulus of the high-pressure phase Pnma is experimentally determined to be 108.6 GPa for the first time. First-principles calculations further support the thermodynamic tendency for the pressure-induced phase transition from R3c to Pnma and produce a bulk modulus that is in close agreement with the experimental value. By correlating with the experimentally obtained trends of the internal [TiO6] oxygen octahedral structural changes under high pressure in both phases, this study demonstrates that the difference in their macroscopic compressibility originates from the significantly higher pressure sensitivity of the oxygen octahedral distortion degree in the R3c phase than that of the Pnma phase. This relatively softer internal microstructure results in a lower bulk modulus than that of the Pnma phase. By providing a detailed analysis of the pressure-induced phase transition and microstructural evolution, this study clarifies the relationship between the microscopic structural features of the high-pressure and ambient-pressure phases of NBT and their influence on macroscopic mechanical properties, thereby establishing a fundamental connection between microscopic structural responses and bulk physical behavior under high-pressure conditions. These findings provide crucial experimental data and theoretical support for further improving the high-pressure performance and applications of lead-free ferroelectric materials.
  • 图 1  NBT的原位高压中子衍射谱 (a) NBT衍射图谱在压力下的演化; (b) 高压下对Pnma相的精修图; (c) 常压下对R3c相的精修图

    Fig. 1.  In-situ high-pressure neutron diffraction patterns of NBT: (a) Evolution of the NBT diffraction patterns under pressure; (b) rietveld refinement plot for the Pnma phase at high pressure; (c) rietveld refinement plot for the R3c phase at ambient pressure.

    图 2  NBT的两相归一化晶胞体积和含量比随压力拟合曲线图

    Fig. 2.  The fitted curves of normalized unit cell volume and phase content ratio versus pressure for the two-phase NBT.

    图 3  第一性原理计算获得的NBT两相归一化晶胞体积和平均原子能量随压力变化图 (a) 在设定压缩率各向同性下的计算结果; (b) 在设定压力各向同性下的计算结果

    Fig. 3.  Normalized unit cell volume and average atomic energy versus pressure for the two-phase NBT obtained from first-principles calculations: (a) Results under the condition of isotropic compressibility; (b) results under the condition of isotropic pressure.

    图 4  NBT体积压力曲线拟合结果 (a)—(c) 中子衍射实验、Cal-1和Cal-2计算获得的R3c相体积压力曲线; (d)—(f) 中子衍射实验、Cal-1和Cal-2计算获得的Pnma相体积压力曲线图

    Fig. 4.  Fitting results of the volume versus pressure curves for NBT: (a)–(c) Volume versus pressure curves for the R3c phase obtained from neutron diffraction experiments, Cal-1, and Cal-2 calculations, respectively; (d)–(f) volume versus pressure curves for the Pnma phase obtained from neutron diffraction experiments, Cal-1, and Cal-2 calculations, respectively.

    图 5  NBT两相在3.6 GPa压力下的结构示意图和氧八面体[TiO6]结构示意图 (a) Pnma相; (b) R3c相; (c) 氧八面体[TiO6]示意图

    Fig. 5.  Schematic illustrations of the two-phase NBT structure and the [TiO6] oxygen octahedron at 3.6 GPa: (a) Pnma phase; (b) R3c phase; (c) oxygen octahedron [TiO6] structure diagram.

    图 6  NBT氧八面体二次伸长$ \lambda $随压力P的变化曲线(虚线对应压力值P = 1.1 GPa)

    Fig. 6.  Pressure dependence of quadratic elongation λ for oxygen octahedra in NBT (the dashed line corresponds to P = 1.1 GPa).

    表 1  NBT晶胞参数精修结果

    Table 1.  Unit cell parameters of NBT from rietveld refinement.

    P/GPaRhombohedral-R3c (Z = 6)Orthorhobmic-Pnma (Z = 4)Rwp/%
    acabc
    05.5176913.538064.96
    0.15.5165813.526094.30
    0.25.5105413.510194.35
    0.85.4994813.52777Phase appears4.78
    1.85.4848713.436325.486035.486207.747576.39
    2.55.4716313.405465.475825.468637.728576.39
    3.65.4565313.369115.460785.453077.708444.95
    4.25.4430813.336655.448235.438787.68796.04
    5.5Phase disappears5.435045.426067.672466.26
    6.25.414345.414437.643345.75
    6.85.414065.403377.636136.52
    下载: 导出CSV

    表 2  NBT两相体积模量信息

    Table 2.  The bulk modulus information of the two phases in NBT.

    B0/GPa B
    R3c 89.3 1.7 Exp, this study
    108.6 6.0 Cal-1, this study
    101.7 1.3 Cal-2, this study
    166.1 4.4 Cal, [29]
    95.2 Exp, [30]
    Pnma 110.1 1.8 Exp, this study
    171.9 4.1 Cal-1, this study
    114.3 1.1 Cal-2, this study
    下载: 导出CSV
  • [1]

    Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M D, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 1500962Google Scholar

    [2]

    Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693Google Scholar

    [3]

    Mesrar M, Lamcharfi T, Echatoui N, Abdi F, Harrach A, Ahjyaje F Z 2019 Moroc. J. Quant. Qual. Res. 1 14

    [4]

    Whittle K R, de los Reyes M, Aughterson R D, Blackford M G, Smith K L, Baldo P, Ryan E P, Zaluzec N J, Lumpkin G R 2018 Materialia 3 186Google Scholar

    [5]

    Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Chase J B, Hackenberger W, Luo J, Jo H R, Lynch C S 2017 Sci. Rep. 7 46758Google Scholar

    [6]

    Shkuratov S I, Baird J, Antipov V G, Hackenberger W, Luo J, Zhang S J, Lynch C S, Chase J B, Jo H R, Roberts C C 2018 Appl. Phys. Lett. 112 122903Google Scholar

    [7]

    Suchanicz J, Jankowska-Sumara I, Kruzina T V 2011 J. Electroceram. 27 45Google Scholar

    [8]

    Mesrar M, Lamcharfi T, Echatoui N S, Abdi F 2022 Materialia 22 101404Google Scholar

    [9]

    Panda P K 2009 J. Mater. Sci. 44 5049Google Scholar

    [10]

    Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N N 1961 Phys. Solid State 2 2651

    [11]

    Suchanicz J, Poleder K, Kania A, Handerek J 1988 Ferroelectrics 77 107Google Scholar

    [12]

    Fleddermann C B, Nation J A 2002 IEEE Trans. Plasma Sci. 25 212

    [13]

    Jiang Y, Wang X, Zhang F, He H 2014 Smart Mater. Struct. 23 085020Google Scholar

    [14]

    Shkuratov S I, Baird J, Talantsev E F 2013 Appl. Phys. Lett. 102 052906Google Scholar

    [15]

    Shkuratov S I, Talantsev E F, Baird J 2011 J. Appl. Phys. 110 024113Google Scholar

    [16]

    Shkuratov S I, Baird J, Antipov V G, Lynch C S, Zhang S J, Chase J B, Jo H R 2021 J. Mater. Chem. A 9 12307Google Scholar

    [17]

    Zhao D, Lenz T, Gelinck G H, Groen P, Damjanovic D, de Leeuw D M, Katsouras I 2019 Nat. Commun. 10 2547Google Scholar

    [18]

    Gao Z P, Peng W, Chen B, Redfern S A T, Wang K, Chu B J, He Q, Sun Y, Chen X F, Nie H C, Deng W, Zhang L K, He H L, Wang G S, Dong X L 2019 Phys. Rev. Mater. 3 035401Google Scholar

    [19]

    Orayech B, Faik A, López G A, Fabelo O, Igartua J M 2015 J. Appl. Crystallogr. 48 318Google Scholar

    [20]

    Chang R C, Chu S Y, Lin Y F, Hong C S, Wong Y P 2007 J. Eur. Ceram. Soc. 27 4453Google Scholar

    [21]

    Dwivedi S, Pareek T, Kumar S 2018 RSC Adv. 8 24286Google Scholar

    [22]

    Ge W, Li J, Viehland D, Chang Y F, Messing G L 2011 Phys. Rev. B 83 224110Google Scholar

    [23]

    Liu Y, Liu H, Sun S D, Wang L, Chen J 2022 Scr. Mater. 207 114283Google Scholar

    [24]

    Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502Google Scholar

    [25]

    Borges Z V, Poffo C M, de Lima J C, Souza S M, Trichês D M, de Biasi R S 2018 J. Appl. Phys. 124 215901Google Scholar

    [26]

    Jones G O, Thomas P A 2002 Acta Crystallogr. B 58 168Google Scholar

    [27]

    Kreisel J, Bouvier P, Dkhil B, Thomas P A, Glazer A M, Welberry T R, Chaabane B, Mezouar M 2003 Phys. Rev. B 68 014113Google Scholar

    [28]

    Kreisel J, Glazer A M, Bouvier P, Lucazeau G 2001 Phys. Rev. B 63 174106Google Scholar

    [29]

    Bujakiewicz-Korońska R, Natanzon Y 2008 Phase Transit. 81 1117Google Scholar

    [30]

    Suchanicz J 2002 J. Mater. Sci. 37 489.Google Scholar

    [31]

    杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威 2022 物理学报 71 156101Google Scholar

    Yang G Z, Xie L, Chen X P, He R Q, Han T X, Niu G L, Fang L M, He D W 2022 Acta Phys. Sin. 71 156101Google Scholar

    [32]

    史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 物理学报 68 116101Google Scholar

    Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar

    [33]

    孙嘉程, 陈喜平, 谢雷, 房雷鸣 2024 高压物理学报 38 030111

    Sun J C, Chen X P, Xie L, Fang L M 2024 Chin. J. High Pressure Phys. 38 030111

    [34]

    房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫 2020 高压物理学报 34 050104

    Fang L M, Chen X P, Xie L, He D W, Hu Q W, Li X, Jiang M Q, Sun G A, Chen B, Peng S M, Li H, Han T X 2020 Chin. J. High Pressure Phys. 34 050104

    [35]

    Kandemir T, Wallacher D, Hansen T, Liss K D, Naumann d'Alnoncourt R, Schlögl R, Behrens M 2012 Nucl. Instrum. Methods Phys. Res. A 673 51Google Scholar

    [36]

    Jacobsen M K, Ridley C J, Bocian A, Kirichek O, Manuel P, Khalyavin D, Azuma M, Attfield J P, Kamenev K V 2014 Rev. Sci. Instrum. 85 043904Google Scholar

    [37]

    Xu H W, Zhao Y S, Zhang J Z, Hickmott D D, Daemen L L 2007 Phys. Chem. Miner. 34 223Google Scholar

    [38]

    Zhou Z Y, Gao Z P, Xiong Z W, Liu G M, Zheng T, Shi Y J, Xiao M Z, Wu J G, Fang L M, Han T X, Liang H, He H L 2022 Appl. Phys. Lett. 121 113903Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [41]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [42]

    Zhou Z Y, Xiong Z W, Liu X R, Zeng T, Liu W B, Wu J G, Gao Z P 2024 Phys. Rev. B 109 104108Google Scholar

    [43]

    Chen H H, Peng F, Mao H K, Shen G Y, Liermann H P, Li Z, Shu J F 2010 J. Appl. Phys. 107 113503Google Scholar

    [44]

    Gerward L, Olsen J S, Petit L, Vaitheeswaran G, Kanchana V, Svane A 2005 J. Alloys Compd. 400 56Google Scholar

    [45]

    Singh P P, Kumar M 2004 Phys. B Condens. Matter 344 41Google Scholar

    [46]

    Voigt W 1889 Ann. Phys. Chem 274 573Google Scholar

    [47]

    Reuss A 1929 Zeit. Angew. Math. Mech 9 49Google Scholar

    [48]

    Hill R 1952 Proc. Phys. Soc. A 65 349Google Scholar

    [49]

    陈美娟, 郭佳芯, 吴浩, 郑潇然, 闵楠, 田辉, 李全军, 都时禹, 沈龙海 2025 物理学报 74 177102Google Scholar

    Chen M J, Guo J X, Wu H, Zheng X R, Ming N, Tian H, Li Q J, Dou S Y, Shen L H 2025 Acta Phys. Sin. 74 177102Google Scholar

    [50]

    Yamanaka T, Nagai T, Okada T, Fukuda T 2005 Z. Kristallogr. - Cryst. Mater. 220 938.Google Scholar

    [51]

    Robinson K, Gibbs G V, Ribbe P H 1971 Science 172 567Google Scholar

    [52]

    Zhou Z Y, Fang L M, Xiong Z W, Zhang Y J, Liu Y X, Liu G M, Liu Y, He R Q, Han T X, Li J, Wang K, Gao Z P 2023 Appl. Phys. Lett. 123 012904Google Scholar

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20240385
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20211163
    [3] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211163
    [4] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20182128
    [5] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, doi: 10.7498/aps.65.237101
    [6] 张力, 陈朗. 固相硝基甲烷相变的第一性原理计算. 物理学报, doi: 10.7498/aps.63.098105
    [7] 刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳. 铀的结构相变及力学性能的第一性原理计算. 物理学报, doi: 10.7498/aps.62.176104
    [8] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, doi: 10.7498/aps.62.087104
    [9] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究. 物理学报, doi: 10.7498/aps.61.197102
    [10] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.097102
    [11] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.076501
    [12] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4930
    [13] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, doi: 10.7498/aps.59.4303
    [14] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.1219
    [15] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, doi: 10.7498/aps.58.2083
    [16] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.438
    [17] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, doi: 10.7498/aps.57.5962
    [18] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分. 物理学报, doi: 10.7498/aps.55.6589
    [19] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, doi: 10.7498/aps.55.2877
    [20] 赵明磊, 钟维烈, 王春雷, 王矜奉, 张沛霖. 钛酸铋钠系铁电体的相变研究. 物理学报, doi: 10.7498/aps.51.1856
计量
  • 文章访问数:  487
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-05
  • 修回日期:  2025-10-06
  • 上网日期:  2025-10-15

/

返回文章
返回