量子计算与量子信息
量子计算与量子信息是当前受到普遍关注的研究领域. 人们热切地期盼这个领域的突破将我们带入下一次工业革命. 然而, 习惯于线性思维的人们往往对于量子技术的短期发展有过高的期待, 而对于更长时间尺度 上的种种可能缺乏想象力. 近年来, 各方势力关于量子技术所展开的政治和商业博弈, 更让这个领域从来不缺少话题.
量子优越性究竟意味着什么? 什么是近未来最有价值的量子应用? 量子计算的材料基础是什么? 2020 年12 月, 中国科学院物理研究所量子计算研究中心组织了“量子计算与量子信息研讨会”, 以探讨这个领域的现状与挑战. 本期专题收录了由参会专家撰写的5 篇综述和1 篇研究论文, 希望对于回答上面的这些问题有所帮助. 更希望人们心中关于量子技术的美好愿望早日实现!

2021, 70 (21): 217802.
doi: 10.7498/aps.70.20211492
摘要 +
半导体量子点量子计算是实现固态量子计算的重要途径之一, 高质量量子计算材料制备是其中的关键. 硅和锗材料能够实现无核自旋的同位素纯化, 满足量子比特对长退相干时间的要求, 同时与当前的硅工艺兼容, 是实现半导体量子计算的重要材料平台. 本文首先概述了近年来半导体量子点量子计算领域取得的重要进展, 然后详细介绍了硅基硅/硅锗异质结、锗/硅锗异质结以及锗/硅一维线的制备方法、材料性质以及相应量子器件的研究进展, 最后对需要解决的关键技术问题以及未来的发展方向进行了展望.

2021, 70 (21): 210302.
doi: 10.7498/aps.70.20210985
摘要 +
量子计算作为一种新兴的计算范式, 有望解决在组合优化、量子化学、信息安全、人工智能领域中经典计算机难以解决的技术难题. 目前量子计算硬件与软件都在持续高速发展, 不过未来几年预计仍无法达到通用量子计算的标准. 因此短期内如何利用量子硬件解决实际问题成为了当前量子计算领域的一个研究热点, 探索近期量子硬件的应用对理解量子硬件的能力与推进量子计算的实用化进程有着重要意义. 针对近期量子硬件, 混合量子-经典算法(也称变分量子算法)是一个较为合理的模型. 混合量子-经典算法借助经典计算机尽可能发挥量子设备的计算能力, 结合量子计算与机器学习技术, 有望实现量子计算的首批实际应用, 在近期量子计算设备的算法研究中具有重要地位. 本文综述了混合量子-经典算法的设计框架以及在量子信息、组合优化、量子机器学习、量子纠错等领域的研究进展, 并对混合量子-经典算法的挑战以及未来研究方向进行了展望.

2021, 70 (21): 210301.
doi: 10.7498/aps.70.20210923
摘要 +
相比于量子门电路模型, 基于测量的量子计算模型为实现普适量子计算提供了另一途径, 且经过近二十年的发展其内涵已得到了极大丰富. 本文对基于测量的量子计算模型的研究历史和现状进行综述. 首先简要介绍该模型的基本理论, 包括量子图态等资源态的概念和工作原理、模型的计算普适性和经典模拟方法、在相关量子信息处理领域的应用等. 接着从量子物理特性的角度概括基于测量的量子计算模型和量子多体系统之间的紧密联系, 包括量子纠缠、互文性、量子关联、对称保护拓扑序和量子物质相等作为计算资源所发挥的独特作用. 然后, 总结实现基于测量的量子计算模型的不同技术路线和实验成果. 这些理论和实验方面的进展是不断推动可扩展容错量子计算机研制的力量源泉. 最后, 对该领域未来的研究方向进行讨论和展望, 希望能启发读者进一步学习和探索相关课题.

2021, 70 (21): 213301.
doi: 10.7498/aps.70.20211363
摘要 +
在单分子层面对物质的特性进行表征在当今科学发展中有着重要意义, 例如生物、化学、材料科学等. 通用纳米尺度传感器的到来有望实现物质科学的一个长远目标—室温大气环境下的单分子结构解析. 近些年来, 金刚石中氮-空位(NV)色心作为一种固态自旋逐渐发展成兼具高空间分辨率和高探测灵敏度的纳米尺度传感器. 由于其无损、非侵入的特性, 在单分子测量方面具有非常出色的表现. 到目前为止, NV传感器已经实现了对磁场、电场、温度等诸多物理量的高灵敏度探测, 是一种潜在的多元化量子传感器. 结合多角度的交叉测量, 有助于提升对新物质、新材料、新现象的认识与理解. 本文从NV传感器的微观结构出发, 简要介绍了在零场这一特殊磁场条件下的几篇探测工作, 包括零场的顺磁共振探测和电场探测.

2021, 70 (21): 210303.
doi: 10.7498/aps.70.20211066
摘要 +
在量子计算过程中, 需要通过量子测量读取计算结果. 然而, 受限于物理实现, 对量子态的测量往往存在较大误差, 直接影响量子计算结果的正确提取, 以及限制量子计算的大规模扩展. 本文针对一种特定形式的量子态, 提出基于辅助单比特测量的量子态间接读取算法, 避免多比特测量带来的大量测量误差. 理论和模拟结果表明, 当所读取的量子态比特数较大时, 该算法相比于直接读取具有更高的正确率, 可用于大规模量子纠错和量子态的高保真度读取.

2021, 70 (21): 210201.
doi: 10.7498/aps.70.20211428
摘要 +
利用量子态的叠加性和纠缠, 量子计算为显著地加速经典算法, 例如大数分解、求解线性方程组、量子多体系统模拟等问题, 提供了可能. 随着量子计算机硬件的快速发展, 探索量子计算超越经典计算极限方向的研究受到了越来越多的重视. 针对一类特定的问题, 现有的量子设备已经展现出超越经典计算机的能力. 但由于一些量子算法(诸如大数分解等问题)需要依赖于一个通用的大规模的容错的量子计算机, 考虑到现阶段的量子设备的量子比特数十分有限, 且容易与环境发生退相干, 近期的研究主要集中在探索基于含噪声的中等规模量子设备以及浅层量子线路的量子优越性. 一些采样问题被作为演示量子优越性的候选项提出. 本文介绍和总结了几个可以在现阶段的量子设备上实现的量子优越性问题, 并就其中两个备受关注的量子优越性问题—随机量子线路模拟和玻色采样及其衍生的采样问题的理论和实验进展、经典模拟算法等展开讨论. 随着上述两类量子优越性问题在超导和光学量子平台的实现, 我们预期当前和近期的量子设备将解决更多问题, 从而实现更一般的量子优势.