搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金刚石固态单自旋的纳米尺度零场探测

赵鹏举 孔飞 李瑞 石发展 杜江峰

引用本文:
Citation:

基于金刚石固态单自旋的纳米尺度零场探测

赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰

Nanoscale zero-field detection based on single solid-state spins in diamond

Zhao Peng-Ju, Kong Fei, Li Rui, Shi Fa-Zhan, Du Jiang-Feng
PDF
HTML
导出引用
  • 在单分子层面对物质的特性进行表征在当今科学发展中有着重要意义, 例如生物、化学、材料科学等. 通用纳米尺度传感器的到来有望实现物质科学的一个长远目标—室温大气环境下的单分子结构解析. 近些年来, 金刚石中氮-空位(NV)色心作为一种固态自旋逐渐发展成兼具高空间分辨率和高探测灵敏度的纳米尺度传感器. 由于其无损、非侵入的特性, 在单分子测量方面具有非常出色的表现. 到目前为止, NV传感器已经实现了对磁场、电场、温度等诸多物理量的高灵敏度探测, 是一种潜在的多元化量子传感器. 结合多角度的交叉测量, 有助于提升对新物质、新材料、新现象的认识与理解. 本文从NV传感器的微观结构出发, 简要介绍了在零场这一特殊磁场条件下的几篇探测工作, 包括零场的顺磁共振探测和电场探测.
    Characterizing the properties of matter at a single-molecule level is highly significant in today’s science, such as biology, chemistry, and materials science. The advent of generalized nanoscale sensors promises to achieve a long-term goal of material science, which is the analysis of single-molecule structures in ambient environments. In recent years, the nitrogen-vacancy (NV) color centers in diamond as solid-state spins have gradually developed as nanoscale sensors with both high spatial resolution and high detection sensitivity. Owing to the nondestructive and non-invasive properties, the NV color centers have excellent performance in single-molecule measurements. So far, the NV centers have achieved high sensitivity in the detection of many physical quantities such as magnetic field, electric field, and temperature, showing their potential applications in versatile quantum sensors. The combination with the cross measurements from multiple perspectives is conducible to deepening the knowledge and understanding the new substances, materials, and phenomena. Starting from the microstructure of NV sensors, several detections under the special magnetic field condition of zero field, including zero-field paramagnetic resonance detection and electric field detection, are introduced in this work.
      通信作者: 石发展, fzshi@ustc.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2018YFA0306600, 2016YFA0502400)、国家自然科学基金 (批准号: 81788101, T2125011, 31971156)、中国科学院 (批准号: GJJSTD20170001, QYZDY-SSW-SLH004, YIPA2015370)、安徽量子信息技术引导专项 (批准号: AHY050000)和统筹推进世界一流大学和一流学科建设专项资金 (批准号: YD2340002004)资助的课题
      Corresponding author: Shi Fa-Zhan, fzshi@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0306600, 2016YFA0502400), the National Natural Science Foundation of China (Grant Nos. 81788101, T2125011, 31971156), the Chinese Academy of Scineces (Grant Nos. GJJSTD20170001, QYZDY-SSW-SLH004, YIPA2015370), the Initiative in Quantum Information Technologies of Anhui Province, China (Grant No. AHY050000), and the USTC Research Funds of the Double First-Class Initiative, China (Grant No. YD2340002004)
    [1]

    Mino L, Borfecchia E, Segura-Ruiz J, Giannini C, Martinez-Criado G, Lamberti C 2018 Rev. Mod. Phys. 90 025007Google Scholar

    [2]

    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S, Jiang Y 2021 Nat. Rev. Methods Primers 1 36

    [3]

    Xu K, Babcock H P, Zhuang X 2012 Nat. Methods 9 185Google Scholar

    [4]

    Göttfert F, Wurm C A, Mueller V, Berning S, Cordes V C, Honigmann A, Hell S W 2013 Biophys. J. 105 L01Google Scholar

    [5]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C 2013 Phys. Rep. 528 1Google Scholar

    [6]

    Dutt M G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A, Hemmer P, Lukin M 2007 Science 316 1312Google Scholar

    [7]

    Waldherr G, Wang Y, Zaiser S, et al. 2014 Nature 506 204Google Scholar

    [8]

    Ruf M, Wan N H, Choi H, Englund D, Hanson R 2021 J. Appl. Phys. 130 070901Google Scholar

    [9]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [10]

    Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M, Walsworth R L 2020 Rev. Mod. Phys. 92 015004Google Scholar

    [11]

    Mitchell M W, Alvarez S P 2020 Rev. Mod. Phys. 92 021001Google Scholar

    [12]

    Balasubramanian G, Chan I, Kolesov R, et al. 2008 Nature 455 648Google Scholar

    [13]

    Maze J R, Stanwix P L, Hodges J S, et al. 2008 Nature 455 644Google Scholar

    [14]

    Shi F, Zhang Q, Wang P, et al. 2015 Science 347 1135Google Scholar

    [15]

    Lovchinsky I, Sushkov A, Urbach E, et al. 2016 Science 351 836Google Scholar

    [16]

    Dolde F, Fedder H, Doherty M W, et al. 2011 Nat. Phys. 7 459Google Scholar

    [17]

    Barson M S, Peddibhotla P, Ovartchaiyapong P, et al. 2017 Nano Lett. 17 1496Google Scholar

    [18]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [19]

    Dolde F, Doherty M W, Michl J, et al. 2014 Phys. Rev. Lett. 112 097603Google Scholar

    [20]

    Barry J F, Turner M J, Schloss J M, Glenn D R, Song Y, Lukin M D, Park H, Walsworth R L 2016 Proc. Natl. Acad. Sci. 113 14133Google Scholar

    [21]

    Choi J, Zhou H, Landig R, et al. 2020 Proc. Natl. Acad. Sci. 117 14636Google Scholar

    [22]

    Fujiwara M, Sun S, Dohms A, et al. 2020 Sci. Adv. 6 eaba9636Google Scholar

    [23]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar

    [24]

    Shi F, Kong F, Zhao P, et al. 2018 Nat. Methods 15 697Google Scholar

    [25]

    Zheng H, Xu J, Iwata G Z, et al. 2019 Phys. Rev. Appl. 11 064068Google Scholar

    [26]

    Kong F, Zhao P, Ye X, Wang Z, Qin Z, Yu P, Su J, Shi F, Du J 2018 Nat. Commun. 9 1563

    [27]

    Kong F, Zhao P, Yu P, Qin Z, Huang Z, Wang Z, Wang M, Shi F, Du J 2020 Sci. Adv. 6 eaaz8244Google Scholar

    [28]

    Li R, Kong F, Zhao P, et al. 2020 Phys. Rev. Lett. 124 247701Google Scholar

    [29]

    Doherty M W, Manson N B, Delaney P, Hollenberg L C 2011 New J. Phys. 13 025019Google Scholar

    [30]

    Gali A, Simon T, Lowther J 2011 New J. Phys. 13 025016Google Scholar

    [31]

    Batalov A, Zierl C, Gaebel T, Neumann P, Chan I Y, Balasubramanian G, Hemmer P, Jelezko F, Wrachtrup J 2008 Phys. Rev. Lett. 100 077401Google Scholar

    [32]

    Manson N, Harrison J, Sellars M 2006 Phys. Rev. B 74 104303Google Scholar

    [33]

    Van Oort E, Glasbeek M 1990 Chem. Phys. Lett. 168 529Google Scholar

    [34]

    Mittiga T, Hsieh S, Zu C, et al. 2018 Phys. Rev. Lett. 121 246402Google Scholar

    [35]

    Broadway D A, Johnson B, Barson M, et al. 2019 Nano Lett. 19 4543Google Scholar

    [36]

    Hsieh S, Bhattacharyya P, Zu C, et al. 2019 Science 366 1349Google Scholar

    [37]

    Toyli D M, Charles F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. 110 8417Google Scholar

    [38]

    Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar

    [39]

    Clore G M, Gronenborn A M 1991 Science 252 1390Google Scholar

    [40]

    Borbat P, Costa-Filho A, Earle K, Moscicki J, Freed J 2001 Science 291 266Google Scholar

    [41]

    Sarkar R, Ahuja P, Vasos P R, Bodenhausen G 2010 Phys. Rev. Lett. 104 053001Google Scholar

    [42]

    Harty T, Allcock D, Ballance C J, Guidoni L, Janacek H, Linke N, Stacey D, Lucas D 2014 Phys. Rev. Lett. 113 220501Google Scholar

    [43]

    Wolfowicz G, Tyryshkin A M, George R E, Riemann H, Abrosimov N V, Becker P, Pohl H J, Thewalt M L, Lyon S A, Morton J J 2013 Nat. Nanotechnol. 8 561Google Scholar

    [44]

    Emondts M, Ledbetter M P, Pustelny S, Theis T, Patton B, Blanchard J W, Butler M C, Budker D, Pines A 2014 Phys. Rev. Lett. 112 077601Google Scholar

    [45]

    McConnell H, Thompson D, Fessenden R W 1959 Proc. Natl. Acad. Sci. U.S.A. 45 1600Google Scholar

    [46]

    Cole T, Kushida T, Heller H C 1963 J. Chem. Phys. 38 2915Google Scholar

    [47]

    Erickson L E 1966 Phys. Rev. 143 295Google Scholar

    [48]

    Neumann P, Kolesov R, Naydenov B, et al. 2010 Nat. Phys. 6 249Google Scholar

    [49]

    Belthangady C, Bar-Gill N, Pham L M, Arai K, Le Sage D, Cappellaro P, Walsworth R L 2013 Phys. Rev. Lett. 110 157601Google Scholar

    [50]

    Hartmann S, Hahn E 1962 Phys. Rev. 128 2042Google Scholar

    [51]

    Tamarat P, Gaebel T, Rabeau J, et al. 2006 Phys. Rev. Lett. 97 083002Google Scholar

    [52]

    Acosta V, Santori C, Faraon A, et al. 2012 Phys. Rev. Lett. 108 206401Google Scholar

    [53]

    Bian K, Zheng W, Zeng X, Chen X, Stöhr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y 2021 Nat. Commun. 12 2457

    [54]

    Xu X, Wang Z, Duan C, et al. 2012 Phys. Rev. Lett. 109 070502Google Scholar

    [55]

    Broadway D A, Dontschuk N, Tsai A, et al. 2018 Nat. Electron. 1 502Google Scholar

    [56]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327Google Scholar

    [57]

    Gross I, Akhtar W, Garcia V, et al. 2017 Nature 549 252Google Scholar

    [58]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [59]

    Oberg L M, de Vries M O, Hanlon L, Strazdins K, Barson M S, Doherty M, Wrachtrup J 2020 Phys. Rev. Appl. 14 014085Google Scholar

    [60]

    Ofori-Okai B, Pezzagna S, Chang K, Loretz M, Schirhagl R, Tao Y, Moores B, Groot-Berning K, Meijer J, Degen C 2012 Phys. Rev. B 86 081406Google Scholar

    [61]

    Sangtawesin S, Dwyer B L, Srinivasan S, et al. 2019 Phys. Rev. X 9 031052

  • 图 1  (a)金刚石的晶格结构; (b) NV色心的能级结构和光跃迁过程

    Fig. 1.  (a) Crystal lattice structure of diamond; (b) energy level structure and optical transition processes of NV color centers.

    图 2  非零场(a)和零场(b)方法对比. θ是分子主轴和外磁场的夹角. 非零场下, 谱峰位置随角度变化, 但是零场谱位置始终保持不变

    Fig. 2.  Comparison of non-zero-field (a) and zero-field (b) methods. θ is the angle between the principle axis of the molecule and the external magnetic field. The position of the spectral peak varies with the angle in the non-zero field, but is always constant in the zero field.

    图 3  1/2核自旋和电子自旋耦合系统能级示意图

    Fig. 3.  Energy levels of 1/2 nuclear spin and 1/2 electron spin coupled system.

    图 4  微波驱动下, NV缀饰态能级和目标电子发生共振. 当目标自旋能级差$\Delta\omega=\varOmega/2$时, 就会和NV之间发生极化转移

    Fig. 4.  NV is driven by microwaves, and the dressed state energy levels resonate with the target spin. When the target spin energy level difference $\Delta\omega=\varOmega/2$, then polarization transfer between NV and target spin occurs.

    图 5  15N-P1中心零场顺磁共振谱[26]. 上面是spin-locking序列, 通过改变驱动功率$\varOmega $来扫描频率. 下面是实验结果

    Fig. 5.  Zero-field paramagnetic resonance spectrum of 15N-P1 center. Top, spin-locking sequence, by changing the driving power $\varOmega $ to scan the frequency. Bottom, the experimental results.

    图 6  零场顺磁共振关联谱序列. 虚线方框内表示射频对目标自旋的操控, 决定了最终的关联信号

    Fig. 6.  Correlation protocol for zero-field paramagnetic resonance measurements. The correlation signal depends on the manipulations on the target spin, which is denoted by the black dashed box.

    图 7  单个P1中心的高分辨顺磁共振谱[27] (a)两种跃迁的Ramsey实验的关联谱信号; (b)对图(a)中时域信号的傅里叶变换

    Fig. 7.  High-resolution electron paramagnetic resonance spectroscopy of single P1 centers[27]: (a) Correlation signals of Ramsey experiments for the two kinds of transitions; (b) Fourier transformations of the time-domain data in panel (a).

    图 8  上方是相位调制微波的波形示意图. 下面是NV自旋态在不同表象下的能级结构. 蓝色虚线表示电场作用产生的能量偏移

    Fig. 8.  Top is a schematic of the waveform of the phase-modulated microwave. Below is the energy structures of the NV center in the different frames by continuous phase-modulated microwave driving. The blue dashed line indicates the energy shift resulting from the electric field effect

    图 9  (a)频率偏移量随着亥姆霍兹线圈电流和电极电压的变化[28]; (b)不同电介质覆盖下, NV缀饰态的Ramsey振荡衰减[28]; (c)图(b)中曲线的拟合的衰减速率, 黑色实线表示(12)式的拟合曲线, 橙色虚线示意反比的关系[28]

    Fig. 9.  (a) Variation of frequency shift with Helmholtz coil current and electrode voltage[28]. (b) Decay of Ramsey oscillations in the NV dressed states with different dielectric coverings[28]. (c) Decay rate of the fitted curve in panel (b). The solid black line indicates the fitted curve of Eq. (12), and the dashed orange line shows the inverse relationship[28]

  • [1]

    Mino L, Borfecchia E, Segura-Ruiz J, Giannini C, Martinez-Criado G, Lamberti C 2018 Rev. Mod. Phys. 90 025007Google Scholar

    [2]

    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S, Jiang Y 2021 Nat. Rev. Methods Primers 1 36

    [3]

    Xu K, Babcock H P, Zhuang X 2012 Nat. Methods 9 185Google Scholar

    [4]

    Göttfert F, Wurm C A, Mueller V, Berning S, Cordes V C, Honigmann A, Hell S W 2013 Biophys. J. 105 L01Google Scholar

    [5]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C 2013 Phys. Rep. 528 1Google Scholar

    [6]

    Dutt M G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A, Hemmer P, Lukin M 2007 Science 316 1312Google Scholar

    [7]

    Waldherr G, Wang Y, Zaiser S, et al. 2014 Nature 506 204Google Scholar

    [8]

    Ruf M, Wan N H, Choi H, Englund D, Hanson R 2021 J. Appl. Phys. 130 070901Google Scholar

    [9]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [10]

    Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M, Walsworth R L 2020 Rev. Mod. Phys. 92 015004Google Scholar

    [11]

    Mitchell M W, Alvarez S P 2020 Rev. Mod. Phys. 92 021001Google Scholar

    [12]

    Balasubramanian G, Chan I, Kolesov R, et al. 2008 Nature 455 648Google Scholar

    [13]

    Maze J R, Stanwix P L, Hodges J S, et al. 2008 Nature 455 644Google Scholar

    [14]

    Shi F, Zhang Q, Wang P, et al. 2015 Science 347 1135Google Scholar

    [15]

    Lovchinsky I, Sushkov A, Urbach E, et al. 2016 Science 351 836Google Scholar

    [16]

    Dolde F, Fedder H, Doherty M W, et al. 2011 Nat. Phys. 7 459Google Scholar

    [17]

    Barson M S, Peddibhotla P, Ovartchaiyapong P, et al. 2017 Nano Lett. 17 1496Google Scholar

    [18]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [19]

    Dolde F, Doherty M W, Michl J, et al. 2014 Phys. Rev. Lett. 112 097603Google Scholar

    [20]

    Barry J F, Turner M J, Schloss J M, Glenn D R, Song Y, Lukin M D, Park H, Walsworth R L 2016 Proc. Natl. Acad. Sci. 113 14133Google Scholar

    [21]

    Choi J, Zhou H, Landig R, et al. 2020 Proc. Natl. Acad. Sci. 117 14636Google Scholar

    [22]

    Fujiwara M, Sun S, Dohms A, et al. 2020 Sci. Adv. 6 eaba9636Google Scholar

    [23]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar

    [24]

    Shi F, Kong F, Zhao P, et al. 2018 Nat. Methods 15 697Google Scholar

    [25]

    Zheng H, Xu J, Iwata G Z, et al. 2019 Phys. Rev. Appl. 11 064068Google Scholar

    [26]

    Kong F, Zhao P, Ye X, Wang Z, Qin Z, Yu P, Su J, Shi F, Du J 2018 Nat. Commun. 9 1563

    [27]

    Kong F, Zhao P, Yu P, Qin Z, Huang Z, Wang Z, Wang M, Shi F, Du J 2020 Sci. Adv. 6 eaaz8244Google Scholar

    [28]

    Li R, Kong F, Zhao P, et al. 2020 Phys. Rev. Lett. 124 247701Google Scholar

    [29]

    Doherty M W, Manson N B, Delaney P, Hollenberg L C 2011 New J. Phys. 13 025019Google Scholar

    [30]

    Gali A, Simon T, Lowther J 2011 New J. Phys. 13 025016Google Scholar

    [31]

    Batalov A, Zierl C, Gaebel T, Neumann P, Chan I Y, Balasubramanian G, Hemmer P, Jelezko F, Wrachtrup J 2008 Phys. Rev. Lett. 100 077401Google Scholar

    [32]

    Manson N, Harrison J, Sellars M 2006 Phys. Rev. B 74 104303Google Scholar

    [33]

    Van Oort E, Glasbeek M 1990 Chem. Phys. Lett. 168 529Google Scholar

    [34]

    Mittiga T, Hsieh S, Zu C, et al. 2018 Phys. Rev. Lett. 121 246402Google Scholar

    [35]

    Broadway D A, Johnson B, Barson M, et al. 2019 Nano Lett. 19 4543Google Scholar

    [36]

    Hsieh S, Bhattacharyya P, Zu C, et al. 2019 Science 366 1349Google Scholar

    [37]

    Toyli D M, Charles F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. 110 8417Google Scholar

    [38]

    Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar

    [39]

    Clore G M, Gronenborn A M 1991 Science 252 1390Google Scholar

    [40]

    Borbat P, Costa-Filho A, Earle K, Moscicki J, Freed J 2001 Science 291 266Google Scholar

    [41]

    Sarkar R, Ahuja P, Vasos P R, Bodenhausen G 2010 Phys. Rev. Lett. 104 053001Google Scholar

    [42]

    Harty T, Allcock D, Ballance C J, Guidoni L, Janacek H, Linke N, Stacey D, Lucas D 2014 Phys. Rev. Lett. 113 220501Google Scholar

    [43]

    Wolfowicz G, Tyryshkin A M, George R E, Riemann H, Abrosimov N V, Becker P, Pohl H J, Thewalt M L, Lyon S A, Morton J J 2013 Nat. Nanotechnol. 8 561Google Scholar

    [44]

    Emondts M, Ledbetter M P, Pustelny S, Theis T, Patton B, Blanchard J W, Butler M C, Budker D, Pines A 2014 Phys. Rev. Lett. 112 077601Google Scholar

    [45]

    McConnell H, Thompson D, Fessenden R W 1959 Proc. Natl. Acad. Sci. U.S.A. 45 1600Google Scholar

    [46]

    Cole T, Kushida T, Heller H C 1963 J. Chem. Phys. 38 2915Google Scholar

    [47]

    Erickson L E 1966 Phys. Rev. 143 295Google Scholar

    [48]

    Neumann P, Kolesov R, Naydenov B, et al. 2010 Nat. Phys. 6 249Google Scholar

    [49]

    Belthangady C, Bar-Gill N, Pham L M, Arai K, Le Sage D, Cappellaro P, Walsworth R L 2013 Phys. Rev. Lett. 110 157601Google Scholar

    [50]

    Hartmann S, Hahn E 1962 Phys. Rev. 128 2042Google Scholar

    [51]

    Tamarat P, Gaebel T, Rabeau J, et al. 2006 Phys. Rev. Lett. 97 083002Google Scholar

    [52]

    Acosta V, Santori C, Faraon A, et al. 2012 Phys. Rev. Lett. 108 206401Google Scholar

    [53]

    Bian K, Zheng W, Zeng X, Chen X, Stöhr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y 2021 Nat. Commun. 12 2457

    [54]

    Xu X, Wang Z, Duan C, et al. 2012 Phys. Rev. Lett. 109 070502Google Scholar

    [55]

    Broadway D A, Dontschuk N, Tsai A, et al. 2018 Nat. Electron. 1 502Google Scholar

    [56]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327Google Scholar

    [57]

    Gross I, Akhtar W, Garcia V, et al. 2017 Nature 549 252Google Scholar

    [58]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [59]

    Oberg L M, de Vries M O, Hanlon L, Strazdins K, Barson M S, Doherty M, Wrachtrup J 2020 Phys. Rev. Appl. 14 014085Google Scholar

    [60]

    Ofori-Okai B, Pezzagna S, Chang K, Loretz M, Schirhagl R, Tao Y, Moores B, Groot-Berning K, Meijer J, Degen C 2012 Phys. Rev. B 86 081406Google Scholar

    [61]

    Sangtawesin S, Dwyer B L, Srinivasan S, et al. 2019 Phys. Rev. X 9 031052

  • [1] 刘厚盛, 郭世峰, 陈明, 张国凯, 郭崇, 高学栋, 蔚翠. 微波等离子化学气相沉积法制备高浓度金刚石-空位色心及其性能研究. 物理学报, 2025, 74(2): 028102. doi: 10.7498/aps.74.20241438
    [2] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [3] 申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊. 高频率分辨的金刚石氮-空位色心宽频谱成像技术. 物理学报, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [4] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [5] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [6] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [7] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [8] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [9] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211348
    [10] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [11] 冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊. 固态金刚石氮空位色心光学调控优化. 物理学报, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [12] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [13] 廖庆洪, 叶杨, 李红珍, 周南润. 金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究. 物理学报, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [14] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [15] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [16] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [17] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [18] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [19] 张存喜, 王瑞, 孔令民. 太赫兹场辅助的单量子阱自旋共振输运. 物理学报, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [20] 韩世莹. 单晶电子顺磁共振研究中零场分裂张量主轴的确定. 物理学报, 1989, 38(2): 317-322. doi: 10.7498/aps.38.317
计量
  • 文章访问数:  5671
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-09-06
  • 上网日期:  2021-09-11
  • 刊出日期:  2021-11-05

/

返回文章
返回