超快原子分子光物理
超快激光技术的发展经历了从飞秒激光到阿秒脉冲的跨越, 相关突破性进展为探索物质微观动力学提供了全新视角. 20世纪80年代, 啁啾脉冲放大技术的发明使得产生超短超强激光成为可能, 极大地推动了强场物理、非线性光学和精密光谱学的发展. 2018年, Gérard Mourou和Donna Strickland因该技术获得诺贝尔物理学奖, 奠定了现代超快激光科学的基础. 进入 21世纪后, 高次谐波产生技术的成熟使得阿秒脉冲的生成和测量成为现实. 2023年, Anne L’Huillier、Pierre Agostini和Ferenc Krausz因阿秒脉冲技术的突破性贡献获得诺贝尔物理学奖, 标志着人类正式进入阿秒科学时代. 阿秒脉冲为实时观测电子运动提供了“超快相机”, 使得化学键断裂、电荷迁移、量子隧穿等超快过程的研究成为可能, 为原子分子物理、量子化学和材料科学带来了革命性的研究手段. 原子分子尺度的微观动力学过程不仅是理解物质宏观性质与功能的基石, 更与超快能量传递、光化学调控、量子信息处理等前沿科学问题密切相关, 为新一代光电器件、精密测量和量子计算等技术的发展提供了关键支撑.
为展示我国在超快原子分子光物理领域的最新成果, 《物理学报》特邀该领域一线科学家组织本期专题, 聚焦强场物理、阿秒科学及超快光学等方向的创新突破. 专题内容涵盖理论方法与实验技术的双重创新, 包括量子动力学新方法实现分子动力学几何相位的直接提取; 半经典响应时间理论揭示分子隧穿电离的超快动力学机制; 非微扰量子电动力学的频域理论构建强 X射线场中单光子康普顿散射的理论框架; 另有研究阐明椭圆偏振强场中分子电离的缀饰态与非缀饰态演化规律;基于光场调控实现太赫兹波的可控产生等研究成果和综述将被报道.
本专题旨在为相关研究提供方法学启示与交叉合作契机. 我们期待这些成果能激发读者对超快科学的探索热情, 推动该领域向更小时间尺度、更高调控精度迈进, 为揭示物质微观动力学规律及新型调控技术开辟新路径.




