-
飞秒激光激发非线性材料是目前太赫兹的关键产生技术之一。它由于具有超快时间分辨、超宽频谱分布等优点,已广泛应用于太赫兹表征与测量、感知与成像等方面。然而通过微结构等对太赫兹波的调控方法只能对太赫兹传输过程进行调控,且面临设计困难,工艺复杂等障碍,难以在产业上广泛应用。本文通过引入脉冲整形系统改变飞秒激光脉冲的时间色散,可以直接调控飞秒激光与铌酸锂晶体的相互作用过程,从而对太赫兹产生过程进行直接调控。同时,本文利用冲击受激拉曼散射模型与黄昆方程,对太赫兹波的产生过程进行仿真模拟,证明了利用飞秒激光脉冲时间色散调控太赫兹波的可行性。这一结果对于未来基于铌酸锂晶体的片上太赫兹源主动调控具有重要的借鉴意义。The excitation of nonlinear materials by femtosecond lasers is one of the key technologies for terahertz generation at present. Owing to its advantages such as ultrashort time resolution and ultrabroad frequency spectrum, it has been widely applied in the characterization and measurement, sensing and imaging of terahertz waves. However, the methods of controlling terahertz waves through microstructures can only regulate the transmission process of terahertz waves and face obstacles such as diffcult design and complex process, making it hard to be widely used in industry. In this paper, by introducing a pulse shaping system to change the time dispersion of femtosecond laser pulses, the interaction process between femtosecond laser and lithium niobate crystals can be directly regulated, thereby directly controlling the terahertz generation process. Taking the second-order time dispersion as an example, using the pump-probe phasecontrast imaging system, we detected the terahertz signals generated by pump light with different second-order time dispersions in lithium niobate. Meanwhile, by using the impact stimulated Raman scattering model and Huang-Kun equation, we simulated the generation process of terahertz waves, proving the feasibility of regulating terahertz waves by using the time dispersion of femtosecond laser pulses. The experimental and simulation results show that when the time dispersion of femtosecond laser causes the pulse width to increase, the time that the lithium niobate lattice is subjected to the impact stimulated Raman scattering force is prolonged, and the macroscopic polarization of the lithium niobate lattice is correspondingly extended. On the one hand, the longer duration of polarization leads to a wider terahertz signal in the time domain and a narrower one in the frequency domain. On the other hand, since the impact stimulated Raman scattering force is proportional to the intensity of the pump light and is in the same direction throughout the interaction time, when the Raman scattering force ends, the lattice reaches the maximum displacement. The longer Raman scattering force causes the lattice to move to one side for a longer time, and correspondingly, the time required for the subsequent vibration of one period is longer, eventually resulting in a lower center frequency. In addition, this paper also points out that the modulation of terahertz signals by pump light pulse width may be affected by the thickness of the wafer, and the modulation effect may be more obvious on thinner media. This result is of great reference significance for the active regulation of on-chip terahertz sources based on lithium niobate crystals in the future.
-
Keywords:
- Temporal Dispersion /
- Terahertz Generation /
- On-Chip Integration
-
[1] Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10371
[2] Shahriar B Y, Elezzabi A Y 2024 ACS Photonics 114733
[3] Suzuki D, Oda S, Kawano Y 2016 Nat. Photonics 10809
[4] Lee G, Lee J, Park Q H, Seo M 2022 ACS Photonics 91500
[5] Zhang X Q, Zhang X, Zhang Z C, Zhang T Y, Xu X X, Tang F, Yang J, Wang J K, Jiang H, Duan Z Y, Wei Y Y, Gong Y B, Zhang H, Li P N, Hu M 2024 Nano Lett. 2415008
[6] Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115151105
[7] Basini M, Pancaldi M, Wehinger B, Udina M, Unikandanunni V, Tadano T, Hoffmann M C, Balatsky A V, Bonetti S 2024 Nature 628534
[8] Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115151105
[9] Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 352208947
[10] Burford N M, El-Shenawee M O 2017 Opt. Eng. 56010901
[11] Zhou X, Lu Y, Liu H B, Wu Q, Xu X T, Chen L, Li Z X, Wang R, Guo J, Xu J J 2023 Mater. Today Phys. 35101102
[12] Xu X T, Lu Y, Huang Y b, Zhou X, Ma R B, Xiong H, Li M L, Wu Q, Xu J J 2023 Opt. Express 3144375
[13] Xu X T, Huang Y B, Lu Y, Ma R B, Wu Q, Xu J J 2023 Chin. J. Lasers 501714004
[14] Huang L, Tian D, Liao L Y, Qiu H S, Bai H, Wang Q, Pan F, Zhang C H, Jin B B, Song C 2025 Adv. Mater. 372402063
[15] Liao G Q, Sun F Z, Lei H Y, Wang T Z, Wang D, Wei Y Y, Liu F, Wang X, Li Y T, Zhang J 2024 Phys. Rev. Lett. 132155001
[16] Zhang S J, Zhou W M, Yin Y, Zou D B, Zhao N, Xie D, Zhuo H B 2023 Chin. Phys. B 32035201
[17] Cheng H Y, Ma Q R, Xu H R, Zhang H P, Jin Z M, He W, Peng Y 2024 Acta Phys. Sin. 73167801
[18] Xiong H, Lu Y, Wu Q, Li Z X, Qi J W, Xu X T, Ma R B, Xu J J 2021 ACS Photonics 82737
[19] Huang Y B, Lu Y, Li W, Xu X T, Jiang X D, Ma R B, Chen L, Ruan N J, Wu Q, Xu J 2024 Light:Sci. Appl. 13212
[20] Lu Y, Huang Y B, Cheng J K, Ma R B, Xu X T, Zang Y J, Wu Q, Xu J J 2024 Nanophotonics 133279
[21] Liu W C, Zhou X W, Zou S C, Hu Z G, Shen Y, Cai M Q, Lin D D, Zhou J, Deng X H, Guo T J, Lei J T 2023 Nanophotonics 121177
[22] Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 92100024
[23] Liu B W, Peng Y, Jin Z M, Wu X, Gu H Y, Wei D S, Zhu Y M, Zhuang S L 2023 Chem. Eng. J. 462142347
[24] Huang L H, Cao H Y, Chen L, Ma Y, Yang Y H, Liu X Y, Wang W Q, Zhu Y M, Zhuang S L 2024 Talanta 269125481
[25] Kosloff R, Hammerich A D, Tannor D 1992 Phys. Rev. Lett. 692172
[26] Chesnoy J, Mokhtari A 1988 Phys. Rev. A 383566
[27] Kosloff R, Hammerich A D, Tannor D 1992 Phys. Rev. Lett. 692172
[28] Huang K 1951 Nature 167779
[29] Huang K 1951 Proc. R. Soc. Lon. Ser. A 208352
[30] Wu Q, Lu Y, Ma R B, Xu X T, Huang Y B, Xu J J 2024 Laser Optoelectron. Prog. 610119001
[31] Wu Q, Werley C A, Lin K H, Dorn A, Bawendi M G, Nelson K A 2009 Opt. Express 179219
[32] Weiner A M 2000 Rev. Sci. Instrum. 711929
[33] Parize G, Natile M, Guichard F, Comby A, Hanna M, Georges P 2025 Appl. Phys. Lett. 126101105
计量
- 文章访问数: 16
- PDF下载量: 0
- 被引次数: 0