搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用频域理论研究束缚电子在强激光场中的单光子康普顿散射过程

邱媛媛 杨玉军 郭迎春 魏志义 王兵兵

引用本文:
Citation:

利用频域理论研究束缚电子在强激光场中的单光子康普顿散射过程

邱媛媛, 杨玉军, 郭迎春, 魏志义, 王兵兵

Study of single-photon Compton scattering process of bound electrons in intense laser fields by using frequency-domain theory

QIU Yuanyuan, YANG Yujun, GUO Yingchun, WEI Zhiyi, WANG Bingbing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 康普顿散射是指强激光场与物质中电子相互作用导致光子发射的非弹性散射过程. 近年来, 随着X射线自由电子激光器迅速发展, X射线激光的强度逐渐增大, X射线单光子康普顿散射过程的信号逐渐增强. 本文基于非微扰量子电动力学的频域理论研究强X射线激光场下束缚电子的单光子康普顿散射过程. 发现随着入射光子能量的增大, 在背向散射时康普顿散射双重微分概率会逐渐降低. 本工作为高频强激光场中康普顿散射与原子电离之间建立了联系, 为探索高激光强度下的原子结构动力学提供了一个研究平台.
    Compton scattering is defined as an inelastic scattering process in which the interaction between strong laser fields and electrons in matter leads to photon emission. In recent years, with the rapid development of X-ray free-electron lasers, the intensity of X-ray lasers has steadily increased, and the photon energy in Compton scattering process has risen correspondingly. Previous studies focus on single-photon Compton scattering of free electrons. However, the mechanism of non-relativistic X-ray photon scattering by bound electrons remains to be elucidated. Therefore, we develop a frequency-domain theory based on non-perturbative quantum electrodynamics to investigate single-photon Compton scattering of bound electrons in strong X-ray laser fields. Our results show that the double-differential probability of Compton backscattering decreases with the increase of incident photon energy. This work establishes a relationship between Compton scattering and atomic ionization in high-frequency intense laser fields, thereby providing a platform for studying atomic structure dynamics under high-intensity laser conditions.
  • 图 1  不同核电荷数类氢离子的波长与康普顿散射DDP谱图. 入射光子能量${\omega _1} = 17.4\;{\mathrm{keV}}$, 散射角$\theta = 133.75 ^\circ $, 其中实心曲线为QED理论计算的结果, 空心曲线是Eisenberger利用IA理论得到的结果

    Fig. 1.  Wavelength and double-differential probability spectra of Compton scattering for hydrogen-like ions with different nuclear charge numbers Z. Incident photon energy ${\omega _1} = 17.4\;{\mathrm{keV}}$, scattering angles $\theta = 133.75 ^\circ $. The solid curves represent results calculated using QED theory, while the hollow curves are those obtained by Eisenberger using the impulse approximation.

    图 2  (a) 入射、散射光的波矢和偏振的几何示意图, xoz平面由入射激光的偏振$ ({\epsilon}_{1}) $和波矢量(k1)定义, 散射光子方向由球坐标$\left( {\theta , \phi } \right)$表征; (b)—(d) 康普顿散射的DDP关于散射光子能量$ {\mathrm{\omega }}_{2} $和散射角$\theta $的分布, 白色点表示自由电子模型预测值; (e)—(g) 实心和空心曲线分别是利用频域理论和Klein-Nishina公式计算得到的康普顿散射微分概率关于散射角的分布; 入射光子能量分别为500 eV (b), (e), 1 keV (c), (f), 10 keV (d), (g), 激光强度$I = 4 \times 1{0^{20}}\;\mathrm{W/cm}^2$

    Fig. 2.  (a) Geometric diagram of wave vectors and polarization states of incident and scattered light. The xoz plane is defined by the polarization $ \left({\epsilon}_{1}\right) $and wave vector (k1) of the incident laser, while the direction of the scattered photon is characterized by spherical coordinates $\left( {\theta , \phi } \right)$. (b)–(d) The double-differential cross-section of Compton scattering as a function of scattered photon energy and scattering angle, with white dots indicating predictions from the free-electron model. (e)–(g) Solid and hollow curves represent differential probability distributions of Compton scattering versus scattering angle, calculated using frequency-domain theory and the Klein-Nishina formula, respectively. The incident photon energies are 500 eV (b), (e) , 1 keV (c), (f) and 10 keV (d), (g) with laser intensity $I = 4 \times 1{0^{20}}\;\mathrm{W/cm}^2$.

    图 3  动量空间中基态电子的密度分布随散射光能量和散射角的变化 (a) ${\omega _1} = 1\;{\mathrm{keV}}$; (b) ${\omega _1} = 10\;{\mathrm{keV}}$; 激光强度$I = $$ 4 \times 1{0^{20}}\;\mathrm{W/cm}^2$, 图中虚线表示(19)式自由电子模型预测散射光子能量值随散射角的变化

    Fig. 3.  Variation of the electron density distribution in momentum space for ground-state electrons as a function of scattered photon energy and scattering angle with laser intensity $I = 4 \times 1{0^{20}}\;\mathrm{W/cm}^2$: (a) ${\omega _1} = 1\;{\mathrm{keV}}$; (b) ${\omega _1} = 10\;{\mathrm{keV}}$. Dashed lines indicate the scattered photon energy versus scattering angle predicted by the free-electron model in Eq. (19).

    图 4  实心曲线是利用频域理论计算的康普顿散射DDP与散射角的关系, 其中$ {\omega _1} = 1\;{\mathrm{keV}}, 5\;{\mathrm{keV}}, 10\;{\mathrm{keV}} $, ${\omega _2} \approx{\omega _1} - $$ {I_{\text{P}}}$, 空心曲线是利用汤姆孙公式计算的微分概率与散射角的关系

    Fig. 4.  Dependence of the double-differential probability of Compton scattering on scattering angle, calculated using frequency-domain theory (solid curve). $ {\omega _1} =1\;{\mathrm{keV}},5\;{\mathrm{keV}}, $$ 10\;{\mathrm{keV}} $, ${\omega _2} \approx {\omega _1} - {I_{\text{P}}}$. The hollow curve shows the differential cross-section derived from the Thomson scattering formula as a function of the scattering angle.

  • [1]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [2]

    Cooper M 1971 Adv. Phys. 20 453Google Scholar

    [3]

    Ching W, Callaway J 1974 Phys. Rev. B 9 5115Google Scholar

    [4]

    Laurent D, Wang C, Callaway J 1978 Phys. Rev. B 17 455

    [5]

    Jaiswal P, Shukla A 2007 Phys. Rev. A 75 022504Google Scholar

    [6]

    Kaneyasu T, Takabayashi Y, Iwasaki Y, Koda S 2011 Nucl. Instrum. Methods Phys. Res. A 659 30Google Scholar

    [7]

    Sun C, Wu Y K 2011 Phys. Rev. Accel. Beams 14 044701Google Scholar

    [8]

    葛愉成 2009 物理学报 58 3094Google Scholar

    Ge Y C 2009 Acta Phys. Sin. 58 3094Google Scholar

    [9]

    Wentzel G 1927 Z. Angew. Phys. 43 524

    [10]

    Du Mond J W M 1929 Phys. Rev. 33 643Google Scholar

    [11]

    Du Mond J W M 1933 Rev. Mod. Phys. 5 1Google Scholar

    [12]

    Eisenberger P, Platzman P 1970 Phys. Rev. A 2 415Google Scholar

    [13]

    Florescu V, Pratt R H 2009 Phys. Rev. A 80 033421Google Scholar

    [14]

    LaJohn L A 2010 Phys. Rev. A 81 043404Google Scholar

    [15]

    Pratt R H, LaJohn L A, Florescu V, Surić T, Chatterjee B K, Roy S C 2010 Radiat. Phys. Chem. 79 124Google Scholar

    [16]

    Huang Z, Kim K J 2007 Phys. Rev. Spec. Top. Accel. Beams 10 034801Google Scholar

    [17]

    Young L, Kanter E P, Krassig B, Li Y, March A M, Pratt S T, Santra R, Southworth S H, Rohringer N, DiMauro L F, Doumy G, Roedig C A, Berrah N, Fang L, Hoener M, Bucksbaum P H, Cryan J P, Ghimire S, Glownia J M, Reis D A, Bozek J D, Bostedt C, Messerschmidt M 2010 Nat. 466 56Google Scholar

    [18]

    Hoener M, Fang L, Kornilov O, Gessner O, Pratt S T, Gu¨hr M, Kanter E P, Blaga C, Bostedt C, Bozek J D, Bucksbaum P H, Buth C, Chen M, Coffee R, Cryan J, DiMauro L, Glownia M, Hosler E, Kukk E, Leone S R, McFarland B, Messerschmidt M, Murphy B, Petrovic V, Rolles D, Berrah N 2010 Phys. Rev. Lett. 104 253002Google Scholar

    [19]

    Fang L, Hoener M, Gessner O, Tarantelli F, Pratt S T, Kornilov O, Buth C, . Gu¨hr M, Kanter E P, Bostedt C, Bozek J D, Bucksbaum P H, Chen M, Coffee R, Cryan J, Glownia M, Kukk E, Leone S R, Berrah N 2010 Phys. Rev. Lett. 105 083005Google Scholar

    [20]

    Yan J W, Qin W L, Chen Y, Decking W, Dijkstal P, Guetg M, Inoue I, Kujala N, Liu S, Long T Y, Mirian N, Geloni G 2024 Nat. Photon. 18 1293Google Scholar

    [21]

    Halavanau A, Decker F J, Emma C, Sheppard J, Pellegrini C 2019 J. Synchrotron Rad. 26 635Google Scholar

    [22]

    Pandey S, Bean R, Sato T, Poudyal I, Bielecki J, Villarreal J C, Yefanov O, Mariani V, White T A, Kupitz C, Hunter M, Abdellatif M H, Bajt S, Bondar V, Echelmeier A, Doppler D, Emons M, Frank M, Fromme R, Gevorkov Y, Giovanetti G, Jiang M, Kim D, Kim Y, Kirkwood H, Klimovskaia A, Knoska J, Koua F H M, Letrun R, Lisova S, Maia L, Mazalova V, Meza D, Michelat T, Ourmazd A, Palmer G, Ramilli M, Schubert R, Schwander P, Silenzi A, Dambietz J S, Tolstikova A, Chapman H N, Ros A, Barty A, Fromme P, Mancuso A P, Schmidt M 2020 Nat. Methods 17 73Google Scholar

    [23]

    Liu T, Huang N S, Yang H X, Qi Z, Zhang K Q, Gao Z F, Chen S, Feng C, Zhang W, Luo H, Fu X X, Liu H, Faatz B, Deng H X, Liu B, Wang D, Zhao Z T 2023 Front. Phys. 11 1172368Google Scholar

    [24]

    Kircher M, Trinter F, Grundmann S, Kastirke G, Weller M, Vela-Perez I, Khan A, Janke C, Waitz M, Zeller S, Mletzko T, Kirchner D, Honkimäki V, Houamer S, Chuluunbaatar O, Popov Y V, Volobuev I P, Schöffler M S, Schmidt L P H, Jahnke T, Dörner R 2022 Phys. Rev. Lett. 128 053001Google Scholar

    [25]

    Fuchs M, Trigo M, Chen J, Ghimire S, Shwartz S, Kozina M, Jiang M, Henighan T, Bray C, Ndabashimiye G, Bucksbaum P H, Feng Y, Herrmann S, Carini G A, Pines J, Hart P, Kenney C, Guillet S, Boutet S, Williams G J, Messerschmidt M, Seibert M M, Moeller S, Hastings J B, Reis D A 2015 Nat. Phys. 11 964Google Scholar

    [26]

    Hopersky A N, Nadolinsky A M, Novikov S A 2015 Phys. Rev. A 92 052709Google Scholar

    [27]

    Krebs D, Reis D A, Santra R 2019 Phys. Rev. A 99 022120Google Scholar

    [28]

    Venkatesh A, Robicheaux F 2020 Phys. Rev. A 101 013409Google Scholar

    [29]

    Shi S, Chen J, Yang Y J, Yan Z C, Liu X J, Wang B B 2022 Opt. Express 30 1664Google Scholar

    [30]

    Dai D J, Fu L B 2022 Phys. Rev. A 105 013101Google Scholar

    [31]

    Gell-Mann M, Goldberger M L 1953 Phys. Rev. 91 398Google Scholar

    [32]

    Guo D S, Åberg T, Crasemann B 1989 Phys. Rev. A 40 4997Google Scholar

    [33]

    Gao L H, Li X F, Fu P M, Freeman R R, Guo D S 2000 Phys. Rev. A 61 063407Google Scholar

    [34]

    Wang B B, Gao L H, Li X F, Guo D S, Fu P M 2007 Phys. Rev. A 75 063419Google Scholar

    [35]

    Wang B B, Guo Y C, Chen J, Yan Z C, Fu P M 2012 Phys. Rev. A 85 023402Google Scholar

    [36]

    Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902.Google Scholar

    [37]

    Zhong S Y, Liang Y Y, Wang S, Teng H, He X K, Wei Z Y 2022 Futures 1 032201Google Scholar

    [38]

    He P L, He F 2015 Phys. Scr. 90 045402Google Scholar

    [39]

    Zhang K, Chen J, Hao X L, Fu P M, Yan Z C, Wang B B 2013 Phys. Rev. A 88 043435Google Scholar

    [40]

    Jin F C, Li F, Yang Y J, Chen J, Liu X J, Wang B B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 245601Google Scholar

    [41]

    Guo Y, Fu P, Yan Z C, Gong J, Wang B B 2009 Phys. Rev. A 80 063408Google Scholar

    [42]

    Jin F C, Tian Y Y, Chen J, Yang Y J, Liu X J, Yan Z C, Wang B B 2016 Phys. Rev. A 93 043417Google Scholar

    [43]

    Jin F C, Chen J, Yang Y, Yan Z C, Wang B B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 195602Google Scholar

    [44]

    Fang Y Q, Sun F X, He Q Y, Liu Y Q 2023 Phys. Rev. Lett. 130 253201Google Scholar

    [45]

    Åberg T, Guo D S, Ruscheinski J, Crasemann B 1991 Phys. Rev. A 44 3169Google Scholar

    [46]

    Åberg T 1993 Phys. Scr. 1993 173

    [47]

    Hu X, Wang H, Guo D S 2008 Can. J. Phys. 86 863Google Scholar

    [48]

    Guo D S, Drake G W F 1992 J. Phys. A: Math. Gen. 25 3383Google Scholar

    [49]

    Guo D S, Drake G W F 1992 J. Phys. A: Math. Gen. 25 5377Google Scholar

    [50]

    Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705Google Scholar

    [51]

    Klein O, Nishina Y 1929 Z. Angew. Phys. 52 853

    [52]

    闫文超, 朱常青, 王进光, 冯杰, 李毅飞, 谭军豪, 陈黎明 2021 物理学报 70 084104Google Scholar

    Yan W C, Zhu C Q, Wang J G, Feng J, Li Y F, Tan J H, Chen L M 2021 Acta Phys. Sin. 70 084104Google Scholar

  • [1] 王春杰, 关清帝, 姜文刚, 余青江, 解峰, 余功硕, 梁建峰, 李雪松, 徐江. 事件顺序重建对康普顿相机成像分辨的影响. 物理学报, doi: 10.7498/aps.74.20241723
    [2] 陈燕红, 王昭, 周泽贤, 陶科伟, 金雪剑, 史路林, 王国东, 喻佩, 雷瑜, 吴晓霞, 程锐, 杨杰. 利用质子能损诊断部分电离等离子体靶中的束缚电子密度. 物理学报, doi: 10.7498/aps.73.20231736
    [3] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, doi: 10.7498/aps.70.20202081
    [4] 张芝振, 李亮. X射线荧光CT成像中荧光产额、退激时间、散射、偏振等关键物理问题计算与分析. 物理学报, doi: 10.7498/aps.70.20210765
    [5] 宋张勇, 于得洋, 蔡晓红. 康普顿相机的成像分辨分析与模拟. 物理学报, doi: 10.7498/aps.68.20182245
    [6] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计. 物理学报, doi: 10.7498/aps.66.010703
    [7] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取. 物理学报, doi: 10.7498/aps.65.164301
    [8] 马永朋, 赵小利, 刘亚伟, 徐龙泉, 康旭, 倪冬冬, 闫帅, 朱林繁, 杨科. NO与C2H2的康普顿轮廓研究. 物理学报, doi: 10.7498/aps.64.153302
    [9] 古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健. 基于全变分最小化和交替方向法的康普顿散射成像重建算法. 物理学报, doi: 10.7498/aps.63.018701
    [10] 吴岱, 刘文鑫, 唐传祥, 黎明. 用于频域方法测量超短电子束纵向分布的Kramers-Krnig变换研究. 物理学报, doi: 10.7498/aps.60.082901
    [11] 孟现柱, 王明红, 任忠民. 基于椭圆超腔的高亮度激光同步辐射分析. 物理学报, doi: 10.7498/aps.59.1638
    [12] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究. 物理学报, doi: 10.7498/aps.58.7156
    [13] 葛愉成. 激光-电子康普顿散射物理特性研究. 物理学报, doi: 10.7498/aps.58.3094
    [14] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响. 物理学报, doi: 10.7498/aps.57.1759
    [15] 叶子飘, 戴长江, 何会林. 束缚电子对7Be太阳中微子流量的影响. 物理学报, doi: 10.7498/aps.51.935
    [16] 陈学俊, 玉岩, 李波, 邓新元. 电子与原子(分子)碰撞的反散射理论. 物理学报, doi: 10.7498/aps.43.1759
    [17] 王晓, 蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, doi: 10.7498/aps.42.1149
    [18] 蒋祺, 陶瑞宝. 有任意带满的紧束缚哈密顿量的实空间重整化群研究. 物理学报, doi: 10.7498/aps.38.1778
    [19] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象. 物理学报, doi: 10.7498/aps.21.1927
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合. 物理学报, doi: 10.7498/aps.14.114
计量
  • 文章访问数:  223
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 修回日期:  2025-05-23
  • 上网日期:  2025-06-12

/

返回文章
返回