-
The paper proposes a quantum enhanced solution method based on quantum K-means for platform clustering and grouping in joint operations campaigns. The method first calculates the number of categories for platform clustering based on the determined number of task clusters, and sets the number of clustering categories in the classical K-means algorithm. By using the location information of the tasks, the clustering center points are calculated and derived. Secondly, the Euclidean distance is used as an indicator to measure the distance between the platform data and each cluster center point. The platform data is quantized and transformed into the corresponding quantum state representation. According to theoretical derivation, the Euclidean distance solution is transformed into the quantum state inner product solution. By designing and constructing a universal quantum state inner product solution quantum circuit, the Euclidean distance solution is completed. Then, based on the sum of squared errors of the clustering dataset, the corresponding quantum circuits are constructed through calculation and deduction. The experimental results show that the proposed method not only effectively solves the platform clustering and grouping problem under such action scales, but also significantly reduces the time and space complexity of the algorithm compared to the classical K-means algorithm.
-
Keywords:
- QK-means algorithm /
- Quantum Enhancement /
- platform clustering
-
[1] Zhang S Y, Zhang W 2016J. Equip. Acad. 27 1
[2] Wang X, Yao P Y, Zhang J Y, Wan L J, Jia F C 2019J. Syst. Eng. Electron.30 1
[3] Yang Y 2023Telecommunication Engineering63 7
[4] Márquez C R, Braganholo V, Ribeiro C C 2024Ann. Oper. Res. 338 1
[5] Macquuen J B 1967Proceedings of the 5th Berkley Symposium on Mathematical Statistics and Probability 281 297
[6] Lin Y S, Wang K D, Ding Z G 2023Ieee Wirel. Commun. Le.12 7
[7] Moyème K D, Yao B, Kwami S S, Pidéname T, Yendoubé L 2024Energies17 12
[8] Manon M, Gilles C, Frédéric P 2024Ieee T. Aero. Elec. Sys. 60 3
[9] Ayad M J, Ku R K 2021Indon. J. Electr. Eng. Co. 24 3
[10] Li Y X, Liu M L, Wang W C 2020Ieee T. Multimedia 22 6
[11] Rani R S, Madhavan P, Prakash A 2022Circ. Syst. Signal Pr. 41 7
[12] Amer A, Saleh A, Abdullah A 2019Future Internet 11 5
[13] Tang D, Man J P, Tang L 2020Ad Hoc Netw. 102 1
[14] Pu Y N, Sun J, Tang N S 2023Image Vision Comput.135 C
[15] Sina B, Gisele H B 2020Water Sci. Technol. 81 8
[16] Anthony E C, Jeffrey L A, Hamid A 2020Commun. Stat-Simul C. 51 10
[17] Barkha N, Poonam V, Priya K 2016IJLTET 7 2
[18] Abiodun M I, Absalom E E, Laith A 2022Inform. Sciences 622 C
[19] Zhang Z B, Ling B W, Huang G H 2024Ieee T. Signal Proces. 72 1
[20] Marco C, Aritz P, Jose A L 2021Ieee T. Neur. Net. Lear. 32 5
[21] Wan B T, Huang W K, Pierre B 2024Granular Comput. 9 2
[22] Hamzehi M, Hosseini S 2022Multimed. Tools Appl. 81 23
[23] Serkan T, Fatih O 2022Applied Sciences 12 11
[24] Eissa M A Q 2022Tehnički Glasnik 16 3
[25] Wei R K, Liu Y, Song J K, Xie Y Z, Zhou K 2024Ieee T. Image Process. 33 1
[26] Pavan P, Vani B 2022ECS Transactions 107 1
[27] Marianna C, Melissa D I, Cecilia R, Vincenzo G 2023Earthq. Eng. Eng. Vib. 22 2
[28] Mohit M,Madhur M, Ketan L 2020Int. J. Futur. Gener. Co. 13 2S
[29] Ibrahem A W, Hashim H A, AbdulKhaleq N Y, Jalal A A 2022Indon. J. Electr. Eng. Co. 27 3
[30] Bezdan T, Stoean C, Naamany A A, Bacanin N, Rashid T A, Zivkovic M, Venkatachalam K 2021Mathematics 9 16
[31] Teague T, Pranav G, Eric R A, Frederic T C 2021Electronics 101690
[32] Oumayma O, Oumayma B, Salah E H, Said R 2022Concurr. Comp-Pract E. 34 15
[33] Gong C G, Dong Z Y, Gani A 2021Quantum Inf. Process. 20 4
[34] Zhang Y J, Mu X D, Guo L M, Zhang P, Zhao D, Bai W H 2023Acta Phys. Sin. 72 9(in Chinese) [张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华2023物理学报72 9]
[35] Liu X J, Yuan J B, Xu J 2018Journal of Jilin University (Engineering Edition) 2(in Chinese) [刘雪娟, 袁家斌, 许娟2018吉林大学学报(工学版) 2]
[36] Rebentrost P, Mohseni M, Lloyd S 2014Phys. Rev. Lett. 113 13
Metrics
- Abstract views: 284
- PDF Downloads: 4
- Cited By: 0