Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable optical properties of Au nanofluids under electric field

Zhao Sheng Yin Jian-Bo Zhao Xiao-Peng

Citation:

Tunable optical properties of Au nanofluids under electric field

Zhao Sheng, Yin Jian-Bo, Zhao Xiao-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using a repeating deoxidization method, we prepared Au nanoparticles with different mean sizes of 11 nm, 35 nm and 58 nm. Then the Au nanoparticles were dispersed in mineral oil to form Au nanofluids by the surfactant-assisted phase transition technique. Under electric field, the optical properties of the Au nanofluids were measured. It was found that the Au nanofluids exhibit significant electric field-induced birefringence and the birefringence index can be adjusted by changing the external electric field strength. Furthermore, the birefringence index is influenced by the Au concentration and particle size. Within the suitable particle concentration range, the index decreases with the increase of Au concentration and particle size. Finally, we further discuss the electric field-induced birefringence phenomena of the Au nanofluids according to the structure transformation mechanism of electrorheological fluids under electric field.
    [1]

    [1]Block H, Kelly J P 1988 J. Phys. D: Appl. Phys. 21 1661

    [2]

    [2]Hao T 2001Adv. Mater. 13 1847

    [3]

    [3]Zhao X P, Yin J B, Tang H 2006 Smart Materials and Structures: New Research, Reece P L Ed, Nova Science Publishing, p1—66

    [4]

    [4]Zhao X P, Yin J B 2006 J. Ind. Eng. Chem. 12 184

    [5]

    [5]Zhou L W 1994 Int. J. Mod. Phys. B 8 2921

    [6]

    [6]Zhao X P, Fan J J 2001 Acta Phys. Sin. 50 1302 (in Chinese)[赵晓鹏、 范吉军 2001 物理学报 50 1302]

    [7]

    [7]Huang M, Zhao X P, Wang B X, Yin J B, Cao C N 2004 Acta Phys. Sin. 53 1895 (in Chinese)[黄敏、 赵晓鹏、 王宝祥、 尹剑波、 曹昌年 2004 物理学报 53 1895]

    [8]

    [8]Zhao X P, Huang M, Tang H, Yin J B, Guo H L, Luo C R 2005 Phys. Lett. A 339 159

    [9]

    [9]Zhao X P, Zhang Q Y, Qu C Z 1999 Acta Photo. Sin. 12 1071 (in Chinese) [赵晓鹏、 张秋艳、 渠长振 1999 光子学报 12 1071]

    [10]

    ]Tang H, Luo C R, Zhao X P 2004 J. Phys. D: Appl. Phys. 37 2337

    [11]

    ]Zhao X P, Zhao Q, Gao X M 2003 J. Appl. Phys. 93 4309

    [12]

    ]Zhao Q, Zhao X P, Qu C Z, Xiang L Q 2004 Appl. Phys. Lett. 84 1985

    [13]

    ]Choi U S 1995 ASME FED 231 99

    [14]

    ]Xuan Y, Li Q 2000 J. Heat Fluid Flow 21 58

    [15]

    ]Lu Q, Xiang L Q, Huang J X, Zhao X P 2008 J. Mater. Res. 22 500 (in Chinese) [卢倩、 向礼琴、 黄景兴、 赵晓鹏 2008 材料研究学报 22 500]

    [16]

    ]Chassagne C, Bedeaux D, Kopper G J M 2006 J. Colloid Interf. Sci. 295 528

    [17]

    ]Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444 (in Chinese) [谢华清、 奚同庚、 王锦昌 2003 物理学报 52 1444]

    [18]

    ]Zheng J J, Sun G 2005 Acta Phys. Sin. 54 5210 (in Chinese) [郑俊娟、 孙刚 2005 物理学报 54 5210]

    [19]

    ]Dong L J, Jiang H T, Yang C Q, Shi Y L 2007 Acta Phys. Sin. 56 4657 (in Chinese)[董丽娟、 江海涛、 杨成全、 石云龙 2007 物理学报 56 4657]

    [20]

    ]Yaroslav A U, Gennady S, Jonathar F 2007 Opt. Exp. 15 14129

    [21]

    ]Bigall N C, Hartling T, Klose M Simon P, Eng L M, Eychmuller A 2008 Nano Lett. 8 4588

    [22]

    ]Averitt R D 1999 J. Opti. Soci. Am. B 16 1824

    [23]

    ]Liu X F, Jiang C Z, Ren F,Fu Q 2005 Acta Phys. Sin.54 4633 (in Chinese)[刘向绯、 蒋昌忠、 任峰、付强 2005 物理学报 54 4633]

    [24]

    ]Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [25]

    ]Wen W J, Men S Q, Lu K Q 1997 Phys. Rev. E 55 3015

    [26]

    ]Brandt P C, Ivlev A V, Morfill G E 2009 J. Chem. Phys. 130 204513

    [27]

    ]van der Zande B M I, Koper G J M, Lekkerkerker H N W 1999 J. Phys. Chem. B 103 5754

    [28]

    ]Zhang X J, Zhao J L, Hou J P 2007 Acta Phys. Sin. 56 4668 (in Chinese)[张晓娟、 赵建林、 侯建平 2007 物理学报 56 4668]

    [29]

    ]Liu N, Guo H C, Fu L W, Kaiser S, Schweizer H, Giessen H 2007 Adv. Mater. 19 3628

    [30]

    ]Mulvaney P 1996 Langmuir 12 788

    [31]

    ]Gao X Y, Xing G M, Chu W G 2008 Adv. Mater. 20 1794

  • [1]

    [1]Block H, Kelly J P 1988 J. Phys. D: Appl. Phys. 21 1661

    [2]

    [2]Hao T 2001Adv. Mater. 13 1847

    [3]

    [3]Zhao X P, Yin J B, Tang H 2006 Smart Materials and Structures: New Research, Reece P L Ed, Nova Science Publishing, p1—66

    [4]

    [4]Zhao X P, Yin J B 2006 J. Ind. Eng. Chem. 12 184

    [5]

    [5]Zhou L W 1994 Int. J. Mod. Phys. B 8 2921

    [6]

    [6]Zhao X P, Fan J J 2001 Acta Phys. Sin. 50 1302 (in Chinese)[赵晓鹏、 范吉军 2001 物理学报 50 1302]

    [7]

    [7]Huang M, Zhao X P, Wang B X, Yin J B, Cao C N 2004 Acta Phys. Sin. 53 1895 (in Chinese)[黄敏、 赵晓鹏、 王宝祥、 尹剑波、 曹昌年 2004 物理学报 53 1895]

    [8]

    [8]Zhao X P, Huang M, Tang H, Yin J B, Guo H L, Luo C R 2005 Phys. Lett. A 339 159

    [9]

    [9]Zhao X P, Zhang Q Y, Qu C Z 1999 Acta Photo. Sin. 12 1071 (in Chinese) [赵晓鹏、 张秋艳、 渠长振 1999 光子学报 12 1071]

    [10]

    ]Tang H, Luo C R, Zhao X P 2004 J. Phys. D: Appl. Phys. 37 2337

    [11]

    ]Zhao X P, Zhao Q, Gao X M 2003 J. Appl. Phys. 93 4309

    [12]

    ]Zhao Q, Zhao X P, Qu C Z, Xiang L Q 2004 Appl. Phys. Lett. 84 1985

    [13]

    ]Choi U S 1995 ASME FED 231 99

    [14]

    ]Xuan Y, Li Q 2000 J. Heat Fluid Flow 21 58

    [15]

    ]Lu Q, Xiang L Q, Huang J X, Zhao X P 2008 J. Mater. Res. 22 500 (in Chinese) [卢倩、 向礼琴、 黄景兴、 赵晓鹏 2008 材料研究学报 22 500]

    [16]

    ]Chassagne C, Bedeaux D, Kopper G J M 2006 J. Colloid Interf. Sci. 295 528

    [17]

    ]Xie H Q, Xi T G, Wang J C 2003 Acta Phys. Sin. 52 1444 (in Chinese) [谢华清、 奚同庚、 王锦昌 2003 物理学报 52 1444]

    [18]

    ]Zheng J J, Sun G 2005 Acta Phys. Sin. 54 5210 (in Chinese) [郑俊娟、 孙刚 2005 物理学报 54 5210]

    [19]

    ]Dong L J, Jiang H T, Yang C Q, Shi Y L 2007 Acta Phys. Sin. 56 4657 (in Chinese)[董丽娟、 江海涛、 杨成全、 石云龙 2007 物理学报 56 4657]

    [20]

    ]Yaroslav A U, Gennady S, Jonathar F 2007 Opt. Exp. 15 14129

    [21]

    ]Bigall N C, Hartling T, Klose M Simon P, Eng L M, Eychmuller A 2008 Nano Lett. 8 4588

    [22]

    ]Averitt R D 1999 J. Opti. Soci. Am. B 16 1824

    [23]

    ]Liu X F, Jiang C Z, Ren F,Fu Q 2005 Acta Phys. Sin.54 4633 (in Chinese)[刘向绯、 蒋昌忠、 任峰、付强 2005 物理学报 54 4633]

    [24]

    ]Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [25]

    ]Wen W J, Men S Q, Lu K Q 1997 Phys. Rev. E 55 3015

    [26]

    ]Brandt P C, Ivlev A V, Morfill G E 2009 J. Chem. Phys. 130 204513

    [27]

    ]van der Zande B M I, Koper G J M, Lekkerkerker H N W 1999 J. Phys. Chem. B 103 5754

    [28]

    ]Zhang X J, Zhao J L, Hou J P 2007 Acta Phys. Sin. 56 4668 (in Chinese)[张晓娟、 赵建林、 侯建平 2007 物理学报 56 4668]

    [29]

    ]Liu N, Guo H C, Fu L W, Kaiser S, Schweizer H, Giessen H 2007 Adv. Mater. 19 3628

    [30]

    ]Mulvaney P 1996 Langmuir 12 788

    [31]

    ]Gao X Y, Xing G M, Chu W G 2008 Adv. Mater. 20 1794

  • [1] Sui Peng-xiang. Effects of Nanoparticle Size on Natural Convection Pattrns of Nanofluids with the Lattice Boltzmann Method. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241332
    [2] Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang. Experiments and analytical solutions of light driven flow in nanofluid droplets. Acta Physica Sinica, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [3] Zhang Bei-Hao, Zheng Lin. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method. Acta Physica Sinica, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [4] Zhang Zhi-Qi, Qian Sheng, Wang Rui-Jin, Zhu Ze-Fei. Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid. Acta Physica Sinica, 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [5] He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [6] Wang De, Shen Rong, Liu Can-Can, Wei Shi-Qiang, Lu Kun-Quan. Evaporation enhancement effect of TiO2 nanoparticles on silicone oil in electrorheological fluid suspension. Acta Physica Sinica, 2015, 64(15): 154704. doi: 10.7498/aps.64.154704
    [7] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [8] Cui Ping, Lu Yang, Ji Ai-Ling, Sun Gang, Lu Kun-Quan, Wang Xue-Zhao, Shen Rong. Electrical conduction mechanism in polar molecule dominated electrorheological fluid. Acta Physica Sinica, 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [9] Luo Chun-Rong, Wang Lian-Sheng, Guo Ji-Quan, Huang Yong, Zhao Xiao-Peng. Tunable effects of connective dendritic left-handed metamaterials based on electrorheological fluids. Acta Physica Sinica, 2009, 58(5): 3214-3219. doi: 10.7498/aps.58.3214
    [10] Zhang Min-Liang, Tian Yu, Jiang Ji-Le, Meng Yong-Gang, Wen Shi-Zhu. Enhancing compressive strength of electrorheological fluid by patterning the electrode. Acta Physica Sinica, 2009, 58(12): 8394-8399. doi: 10.7498/aps.58.8394
    [11] Wang Lian-Sheng, Luo Chun-Rong, Huang Yong, Zhao Xiao-Peng. Electrically tunable negative permeability metamaterials based on electrorheological fluids. Acta Physica Sinica, 2008, 57(6): 3571-3577. doi: 10.7498/aps.57.3571
    [12] Huang Min, Zhao Xiao-Peng, Wang Bao-Xiang, Yin Jian-Bo, Cao Chang-Nian. Modulatory character of microwave reflection behavior in electrorheological fluids. Acta Physica Sinica, 2004, 53(6): 1895-1899. doi: 10.7498/aps.53.1895
    [13] Ouyang Cheng. Asymptotic estimation for the system of electro-rheological fluids. Acta Physica Sinica, 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
    [14] Zhao Xiao-Peng, Gao Xiu-Min, Gao Xiang-Yang, Gao Dan-Jun. Phase transition of solid-liquid electrorheological system in flow percess. Acta Physica Sinica, 2003, 52(2): 405-410. doi: 10.7498/aps.52.405
    [15] Xie Hua-Qing, Xi Tong-Geng, Wang Jin-Chang. Study on the mechanism of heat conduction in nanofluid medium. Acta Physica Sinica, 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
    [16] Zhao Xiao-Peng, Gao Xiu-Min, Gao Dan-Jun, Zhong Hong-Fei. . Acta Physica Sinica, 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
    [17] ZHAO XIAO-PENG, GAO DAN-JUN. SIMULATION TO POISEUILLE FLOW OF ER FLUIDS BY CONSIDERING SHORT-RANGE INTERACTION OF MULTI-PARTICLES. Acta Physica Sinica, 2001, 50(6): 1115-1120. doi: 10.7498/aps.50.1115
    [18] ZHAO XIAO-PENG, FAN JI-JUN, GAO XIU-MIN, CAO CHANG-NIAN. THE ADJUSTABLE CHARACTER OF MICROWAVE TRANSMITTANCE IN ER FLUID. Acta Physica Sinica, 2001, 50(7): 1302-1307. doi: 10.7498/aps.50.1302
    [19] LIU LI-WEI, WANG ZUO-WEI, ZHOU LU-WEI, WANG ZHI-JIN, GAO GUANG-JUN, LIU XIAO-JUN. SQUEEZE FLOW VISCOELASTICITY OF ELECTRORHEOLOGICAL FLUIDS BASED ON MICROCRYSTAL LINE CELLULOSE. Acta Physica Sinica, 2000, 49(9): 1886-1891. doi: 10.7498/aps.49.1886
    [20] XU SU-JUAN, MEN SHOU-QIANG, WANG BIAO, LU KUN-QUAN. STUDY OF A ELECTRORHEOLOGICAL FLUID:TiO2 COATING GRAPHITE/SILICONE OIL. Acta Physica Sinica, 2000, 49(11): 2176-2179. doi: 10.7498/aps.49.2176
Metrics
  • Abstract views:  8889
  • PDF Downloads:  1031
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2009
  • Accepted Date:  27 August 2009
  • Published Online:  15 May 2010

/

返回文章
返回