-
The electromagnetic hydrodynamics(EMHD) propulsion by surface is performed through the reaction of electromagnetic body force, which is induced in conductive flow fluid (such as seawater, plasma and so on) around the propulsion unit. Based on the basic governing equations of electromagnetic field and hydrodynamics, by numerical simulations obtained by the finite volume method, the characteristics of flow field structures near the navigating and the strength variation of propulsion force are investigated at varying positions (the angle of attack). The results show that surface electromagnetic body force can modify the structure and the input energy of flow boundary layer, which enables the navigation to obtain the thrust. With the increase of interaction parameter the effect of viscous resistance and pressure drag to navigating decrease and the nonlinear relationship between propulsion coefficient and interaction parameter tends to be linear gradually. The strength of propulsion force depends mainly on the electromagnetic body force. The lift force can be improved effectively through the EMHD propulsion by surface at an angle of attack for navigating. The navigating surface can be designed as working space of propulsion units, which is of certain significance for optimizing the whole struction and improving the efficiency.
-
Keywords:
- propulsion by surfaces /
- navigating /
- propulsion unit /
- electromagnetic body force
[1] Kim S J, Lee C M 2000 Exp. Fluids 28 252
[2] [3] Engel A, Friedrichs R 2002 Am. J. Phys. 70 4
[4] [5] Shatrov V, Gerbeth G 2007 Phys. Fluids 19 035109
[6] [7] McCamley M, Henoch C 2006 AIAA Flow Control Conference (Reston: American Institute of Aeronautics and Astronautics) p3191
[8] [9] Lantzsch R, Gerbeth G 2007 J. Cryst. Growth 305 249
[10] Zhang H, Fan B C, Chen Z H 2010 Comput. Fluids 39 1261
[11] [12] [13] Weier T 2003 Flow Turbul. Combus. 71 5
[14] [15] Weier T, Gerbeth G 2004 Eur. J. Mech. B 23 835
[16] [17] Sam L P, Rao B N 1995 Acta Mech. 113 1
[18] [19] Sathyakrishna M 2001 Acta Mech. 150 67
[20] Dousset V, Alban P 2008 Phys. Fluids 20 017104
[21] [22] Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 648 (in Chinese)[陈耀慧、范宝春、陈志华、周本谋 2008 物理学报 57 648]
[23] [24] Kim S J, Lee C M 2001 Fluid Dyn. Res. 29 47
[25] [26] [27] Bityurin V A, Bocharov A N 2005 AIAA/CIRA International Space Planes and Hypersonics Systems and Technology (Reston:American Institute of Aeronautics and Astronautics) p3225
[28] [29] Chen Z H, Fan B C, Zhou B M, Li H Z 2007 Chin. Phys. 16 1027
[30] [31] Qiu X M, Tang D L, Sun A P, Liu W D, Zeng X J 2007 Chin. Phys. 16 186
[32] [33] Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494 (in Chinese) [杨 涓、苏纬仪、毛根旺、夏广庆 2006 物理学报 55 6494]
[34] Zhang H, Fan B C, Chen Z H 2010 Eur. J. Mech. B 29 53
[35] [36] Smolentsev S, Abdou M 2005 Appl. Math. Model. 29 215
[37] [38] Molokov S 2007 Magnetohydrodynamics Historical Evolution and Trends (Berlin: Springer) p295
[39] [40] [41] Baaziz D 2009 Magnetohydrodynamics 45 281
[42] Mutschke G, Gerbeth G, Albrecht T, Grundmann R 2006 Eur. J. Mech. B 25 137
[43] [44] Joel H F, Milovan P 2002 Computational Methods for Fluid Dynamics (Berlin: Springer-Verlag) pp157240
[45] [46] [47] Ren Y X, Chen H X 2006 The Basics of Computational Fluid Dynamics (Beijing: Tsinghua University Press) p93 (in Chinese) [任玉新、陈海昕 2006 计算流体力学基础 (北京: 清华大学出版社) 第93页]
-
[1] Kim S J, Lee C M 2000 Exp. Fluids 28 252
[2] [3] Engel A, Friedrichs R 2002 Am. J. Phys. 70 4
[4] [5] Shatrov V, Gerbeth G 2007 Phys. Fluids 19 035109
[6] [7] McCamley M, Henoch C 2006 AIAA Flow Control Conference (Reston: American Institute of Aeronautics and Astronautics) p3191
[8] [9] Lantzsch R, Gerbeth G 2007 J. Cryst. Growth 305 249
[10] Zhang H, Fan B C, Chen Z H 2010 Comput. Fluids 39 1261
[11] [12] [13] Weier T 2003 Flow Turbul. Combus. 71 5
[14] [15] Weier T, Gerbeth G 2004 Eur. J. Mech. B 23 835
[16] [17] Sam L P, Rao B N 1995 Acta Mech. 113 1
[18] [19] Sathyakrishna M 2001 Acta Mech. 150 67
[20] Dousset V, Alban P 2008 Phys. Fluids 20 017104
[21] [22] Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 648 (in Chinese)[陈耀慧、范宝春、陈志华、周本谋 2008 物理学报 57 648]
[23] [24] Kim S J, Lee C M 2001 Fluid Dyn. Res. 29 47
[25] [26] [27] Bityurin V A, Bocharov A N 2005 AIAA/CIRA International Space Planes and Hypersonics Systems and Technology (Reston:American Institute of Aeronautics and Astronautics) p3225
[28] [29] Chen Z H, Fan B C, Zhou B M, Li H Z 2007 Chin. Phys. 16 1027
[30] [31] Qiu X M, Tang D L, Sun A P, Liu W D, Zeng X J 2007 Chin. Phys. 16 186
[32] [33] Yang J, Su W Y, Mao G W, Xia G Q 2006 Acta Phys. Sin. 55 6494 (in Chinese) [杨 涓、苏纬仪、毛根旺、夏广庆 2006 物理学报 55 6494]
[34] Zhang H, Fan B C, Chen Z H 2010 Eur. J. Mech. B 29 53
[35] [36] Smolentsev S, Abdou M 2005 Appl. Math. Model. 29 215
[37] [38] Molokov S 2007 Magnetohydrodynamics Historical Evolution and Trends (Berlin: Springer) p295
[39] [40] [41] Baaziz D 2009 Magnetohydrodynamics 45 281
[42] Mutschke G, Gerbeth G, Albrecht T, Grundmann R 2006 Eur. J. Mech. B 25 137
[43] [44] Joel H F, Milovan P 2002 Computational Methods for Fluid Dynamics (Berlin: Springer-Verlag) pp157240
[45] [46] [47] Ren Y X, Chen H X 2006 The Basics of Computational Fluid Dynamics (Beijing: Tsinghua University Press) p93 (in Chinese) [任玉新、陈海昕 2006 计算流体力学基础 (北京: 清华大学出版社) 第93页]
Catalog
Metrics
- Abstract views: 7601
- PDF Downloads: 985
- Cited By: 0