-
Based on sol-gel and screen-printed method, nanoporous TiO2 thin films obtained under different sintering temperatures and times are adopted in dye-sensitized solar cells. According to FESEM, TiO2 particles tend to compact through touch contact under low sintering temperature, but touch contact is substituted by surface contact when the temperature is up to 510 ℃, which results in larger particle coordination number. Moreover, the influence of different contact ways between TiO2 particles on the electron transport is investigated by IMPS/IMVS technology. The results indicate that with the sintering temperature increasing from 420 ℃ to 510 ℃, the electron transport time ( d) decreases while the electron effective diffusion length (L n) increases, owing to the increased contact surface between TiO2 particles. However, when the sintering temperature increases up to 550 ℃, the porous structure of the TiO2 electrode collapses and new surface state appears on the TiO2 surface, leading to the increase of d. It is suggested that the larger short-circuit current density (Jsc) and efficiency () can be obtained when the sintering temperature of nanoporous TiO2 film is in a range of 480-510 ℃.
-
Keywords:
- interface /
- electron transport /
- dark current /
- dye-sensitized solar cell
[1] ORegan B, Greatzel M 1991 Nature 353 737
[2] Hegfleldt A, Greatzel M 1995 Chem. Rev. 95 49
[3] [4] Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元、孔凡太、胡林华、史成武、方霞琴、潘 旭、王孔嘉 2005 物理学报 54 1919]
[5] [6] [7] Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese)[张 苑、赵 颖、蔡 宁、熊绍珍 2008 物理学报 57 5806]
[8] Mincuzzi G, Vesce L, Reale A, Carlo A D, Brown T M 2009 Appl. Phys. Lett. 95 103312
[9] [10] [11] Kim H, Auyeung R C Y, Ollinger M, Kushto G P, Kafafi Z H, Pique A 2006 Appl. Phys. A 83 73
[12] [13] Hart J N, Cervini R, Cheng Y B, Simon G P, Spiccia L 2004 Solar Ener. Mater. Solar Cells 84 135
[14] [15] Park N G, Kim K M, Kang M G, Ryu K S, Chang S H, Shin Y J 2005 Adv. Mater. 17 2349
[16] Li X, Lin H, Li J B, Wang N, Lin C F, Zhang L Z 2008 J. Photochem. and Photobio. A: Chem. 1985 247
[17] [18] [19] Nakade S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T, Wada Y, Mori H, Yanagida S 2002 J. Phys. Chem. B 106 10004
[20] [21] Alexander G A, Anders H 2008 J. Phys. Chem. C 112 10021
[22] [23] Huang P Y 1997 Principles of powder metallurgy (Beijing:Metallurgical Industry Press) p268-272 (in Chinese) [黄培云 1997 粉末治金原理(北京:冶金工业出版社)第268-272页]
[24] [25] Zhang S H 2004 MS Thesis (Changchun: JiLin University) (in Chinese) [张思华 2004 硕士学位论文(长春:吉林大学)\]
[26] Gao J Q 2009 Preparation of Inorganic Non-metallic Materials (Xi'an:Xi'an Jiaotong University Press) p136-144(in Chinese)[高积强 2009 无机非金属材料制备方法(西安:西安交通大学出版社)第136-144页]
[27] [28] [29] Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135 (in Chinese) [胡林华、戴松元、王孔嘉 2003 物理学报 52 2135]
[30] Xu W W, Dai S Y, Fang X Q, Hu L H, Kong F T, Pan X, Wang K J 2005 Acta Phys.Sin. 54 5943 (in Chinese) [徐炜炜、戴松元、方霞琴、胡林华、孔凡太、潘 旭、王孔嘉 2005 物理学报 54 5943]
[31] [32] [33] Stathatos E, Lianos R, Zakeeruddin S M, Liska P, Gratzel M 2003 Chem. Mater. 15 1825
[34] [35] Peter L M, Wijayantha K G U 1999 Electrochem. Commum. 1 576
[36] [37] Zhao D, Peng T Y, Lu L L, Cai P, Jiang P, Bian Z Q 2008 J. Phys. Chem. C 112 8486
[38] [39] Schlichthorl G, Park N G, Frank A J 1999 J. Phys. Chem. B 103 782
[40] Kopidakis N, Benkstein K D, van de Lagemaat J, Frank A J 2003 J. Phys. Chem. B 107 11307
[41] [42] Kou D X, Liu W Q, HU L H, Huang Y, Dai S Y, Jiang N Q 2010 Acta Phys. Sin. 59 5858 (in Chinese) [寇东星、刘伟庆、胡林华、黄 阳、戴松元、姜年权 2010 物理学报 59 5858]
[43] -
[1] ORegan B, Greatzel M 1991 Nature 353 737
[2] Hegfleldt A, Greatzel M 1995 Chem. Rev. 95 49
[3] [4] Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元、孔凡太、胡林华、史成武、方霞琴、潘 旭、王孔嘉 2005 物理学报 54 1919]
[5] [6] [7] Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese)[张 苑、赵 颖、蔡 宁、熊绍珍 2008 物理学报 57 5806]
[8] Mincuzzi G, Vesce L, Reale A, Carlo A D, Brown T M 2009 Appl. Phys. Lett. 95 103312
[9] [10] [11] Kim H, Auyeung R C Y, Ollinger M, Kushto G P, Kafafi Z H, Pique A 2006 Appl. Phys. A 83 73
[12] [13] Hart J N, Cervini R, Cheng Y B, Simon G P, Spiccia L 2004 Solar Ener. Mater. Solar Cells 84 135
[14] [15] Park N G, Kim K M, Kang M G, Ryu K S, Chang S H, Shin Y J 2005 Adv. Mater. 17 2349
[16] Li X, Lin H, Li J B, Wang N, Lin C F, Zhang L Z 2008 J. Photochem. and Photobio. A: Chem. 1985 247
[17] [18] [19] Nakade S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T, Wada Y, Mori H, Yanagida S 2002 J. Phys. Chem. B 106 10004
[20] [21] Alexander G A, Anders H 2008 J. Phys. Chem. C 112 10021
[22] [23] Huang P Y 1997 Principles of powder metallurgy (Beijing:Metallurgical Industry Press) p268-272 (in Chinese) [黄培云 1997 粉末治金原理(北京:冶金工业出版社)第268-272页]
[24] [25] Zhang S H 2004 MS Thesis (Changchun: JiLin University) (in Chinese) [张思华 2004 硕士学位论文(长春:吉林大学)\]
[26] Gao J Q 2009 Preparation of Inorganic Non-metallic Materials (Xi'an:Xi'an Jiaotong University Press) p136-144(in Chinese)[高积强 2009 无机非金属材料制备方法(西安:西安交通大学出版社)第136-144页]
[27] [28] [29] Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135 (in Chinese) [胡林华、戴松元、王孔嘉 2003 物理学报 52 2135]
[30] Xu W W, Dai S Y, Fang X Q, Hu L H, Kong F T, Pan X, Wang K J 2005 Acta Phys.Sin. 54 5943 (in Chinese) [徐炜炜、戴松元、方霞琴、胡林华、孔凡太、潘 旭、王孔嘉 2005 物理学报 54 5943]
[31] [32] [33] Stathatos E, Lianos R, Zakeeruddin S M, Liska P, Gratzel M 2003 Chem. Mater. 15 1825
[34] [35] Peter L M, Wijayantha K G U 1999 Electrochem. Commum. 1 576
[36] [37] Zhao D, Peng T Y, Lu L L, Cai P, Jiang P, Bian Z Q 2008 J. Phys. Chem. C 112 8486
[38] [39] Schlichthorl G, Park N G, Frank A J 1999 J. Phys. Chem. B 103 782
[40] Kopidakis N, Benkstein K D, van de Lagemaat J, Frank A J 2003 J. Phys. Chem. B 107 11307
[41] [42] Kou D X, Liu W Q, HU L H, Huang Y, Dai S Y, Jiang N Q 2010 Acta Phys. Sin. 59 5858 (in Chinese) [寇东星、刘伟庆、胡林华、黄 阳、戴松元、姜年权 2010 物理学报 59 5858]
[43]
Catalog
Metrics
- Abstract views: 9321
- PDF Downloads: 723
- Cited By: 0