-
In order to explore the proper working voltage for the third-generation low light level image intensifier, the influence of pro-proximity pulse voltage on image intensifier halo effect is investigated. The pulse voltage is applied to photocathode of image intensifier. Respectively change the high and low level voltage and duty ratio, image intensifier halo images are collected by high-resolution charge-coupled device (CCD). The gray distributions for pixel points on halo image central line are given and comparatively analyzed. The results show that as high level voltage and duty ratio increase, the number of pixel points whose gray value is 255 increases and the border between signal and background becomes clear. When high level voltage is above 200 V and duty ratio is above 60%, the pro-proximity voltage has not great influence on image intensifier halo effect. When low level voltage is above 2 V, photoelectrons escaping from photocathode cannot reach microchannel plate under low level voltage stage. The present investigation is beneficial to the exploration of the optimal working voltage for image intensifier and energy range of photoelectrons escaping from photocathode, and provides an experimental support for the improvement of the third-generation low light level image intensifier performance.
-
Keywords:
- low light level image intensifiers /
- halo /
- pro-proximity /
- pulse voltage
[1] Joseph P E 2009 Proc. SPIE 7326 73260I
[2] John K 2010 Military & Aerospace Electronics 21 40
[3] Zhu H Q, Wang K L, Xiang S M, Song G Z 2008 Rev. Sci. Instrum 79 023708
[4] Nittoh K, Konagai C, Noji T, Miyabe K 2009 Nuclear Instruments and Methods in Physics Research A 605 107
[5] Ren L, Chang B K, Hou R L, Wang Y 2011 Acta Phys. Sin. 60 087202 (in Chinese) [任玲, 常本康, 侯瑞丽, 王勇 2011 物理学报 60 087202]
[6] Yoichi A, Makoto S 2011 Nuclear Instruments and Methods in Physics Research A 647 34
[7] Niu J, Zhang Y J, Chang B K, Xiong Y J 2011 Acta Phys. Sin. 60 044209 (in Chinese) [牛军, 张益军, 常本康, 熊雅娟 2011 物理学报 60 044209]
[8] Cheng Y J, Xiang S M, Shi H L 2007 Journal of Applied Optics 28 578 (in Chinese) [程耀进, 向世明, 师宏立 2007 应用光学 28 578]
[9] Zhu H Q, Wang K L, Xiang S M 2007 Acta Photon. Sin. 36 1983 (in Chinese)[朱宏权, 王奎禄, 向世明 2007 光子学报 36 1983]
[10] Smith L S, King E P, Cogger L L 1983 Appl. Opt. 22 1268
[11] Cui D X, Ren L, Shi F, Shi J F, Qian Y S, Wang H G, Chang B K 2012 Chin. Opt. Lett. 10 060401
[12] Thomas P J, Allison R S, Carr P, Shen E, Jennings S, Macuda T, Craig G, Hornsey R 2005 Proc. SPIE 5800 21
[13] Ren L, Chang B K, Wang H G 2012 Opt. Commun. 285 2650
-
[1] Joseph P E 2009 Proc. SPIE 7326 73260I
[2] John K 2010 Military & Aerospace Electronics 21 40
[3] Zhu H Q, Wang K L, Xiang S M, Song G Z 2008 Rev. Sci. Instrum 79 023708
[4] Nittoh K, Konagai C, Noji T, Miyabe K 2009 Nuclear Instruments and Methods in Physics Research A 605 107
[5] Ren L, Chang B K, Hou R L, Wang Y 2011 Acta Phys. Sin. 60 087202 (in Chinese) [任玲, 常本康, 侯瑞丽, 王勇 2011 物理学报 60 087202]
[6] Yoichi A, Makoto S 2011 Nuclear Instruments and Methods in Physics Research A 647 34
[7] Niu J, Zhang Y J, Chang B K, Xiong Y J 2011 Acta Phys. Sin. 60 044209 (in Chinese) [牛军, 张益军, 常本康, 熊雅娟 2011 物理学报 60 044209]
[8] Cheng Y J, Xiang S M, Shi H L 2007 Journal of Applied Optics 28 578 (in Chinese) [程耀进, 向世明, 师宏立 2007 应用光学 28 578]
[9] Zhu H Q, Wang K L, Xiang S M 2007 Acta Photon. Sin. 36 1983 (in Chinese)[朱宏权, 王奎禄, 向世明 2007 光子学报 36 1983]
[10] Smith L S, King E P, Cogger L L 1983 Appl. Opt. 22 1268
[11] Cui D X, Ren L, Shi F, Shi J F, Qian Y S, Wang H G, Chang B K 2012 Chin. Opt. Lett. 10 060401
[12] Thomas P J, Allison R S, Carr P, Shen E, Jennings S, Macuda T, Craig G, Hornsey R 2005 Proc. SPIE 5800 21
[13] Ren L, Chang B K, Wang H G 2012 Opt. Commun. 285 2650
Catalog
Metrics
- Abstract views: 6618
- PDF Downloads: 348
- Cited By: 0