-
A structural stable crystalline analogue of α-graphyne is predicted by an efficient semi-empirical Hamiltonian scheme based on quantum mechanics. This analogue can be derived by substituting carbon atoms in six corners of α-graphyne with Ge atoms, which is referred to as α-CGeyne. We investigate the structure stability, electronic and thermodynamic properties of this analogue, and the calculations indicate that the most stable structure is a hexagonal honeycomb planar structure with a lattice constant of 8.686 Å. This material is a semiconductor with a band gap of 1.078 eV and it can keep intact until 2280 K and recovers to its initial structure through quenching.
-
Keywords:
- α-graphyne /
- α-CGeyne /
- molecular dynamics simulation /
- thermostability
[1] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687
[2] Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D 2010 Chem. Commun. 46 3256
[3] Long M Q, Tang L, Wang D, Li Y, Shuai Z G 2011 ACS. Nano 5 2593
[4] Pei Y 2012 Physica B 407 4436
[5] Qian X, Ning Z, Li Y, Liu H, Ouyang C, Chen Q, Li Y 2012 Dalton Trans. 41 730
[6] Du H L, Deng Z B, L Z Y, Yin Y H, Yu L L, Wu H, Chen Z, Zou Y, Wang Y S, Liu H B, Li Y L 2011 Synth. Met. 161 2055
[7] Wang S, Yi L X, Halpert J E, Lai X Y, Liu Y Y, Cao H B, Yu R B, Wang D, Li Y L 2011 Small 8 265
[8] Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J 2011 J. Phys. Chem. C 115 2611
[9] Tongay S, Dag S, Durgun E, Senger R T, Ciraci S 2005 J. Phys. Condens. Mat. 17 3823
[10] Enyashin A N, Ivanovskii A L 2013 Superlat. Microstr- uct. 55 75
[11] Pei Y, Wu H B 2013 Chin. Phys. B 22 057303
[12] Özçelik V O, Ciraci S 2013 J. Phys. Chem. C 117 2175
[13] Yan X, Xin Z H, Zhang J J 2013 Acta Phys. Sin. 62 238101 (in Chinese) [颜笑, 辛子华, 张娇娇 2013 物理学报 62 238101]
[14] Cranford S W, Buehler M J 2011 Carbon 49 4111
[15] Kang J, Li J B, Wu F M, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466
[16] Zhang Y Y, Pei Q X, Wang C M 2012 Appl. Phys. Lett. 101 081909
[17] Cui H J, Sheng X L, Yan Q B, Zheng Q R, Su G 2013 Phys. Chem. Chem. Phys. 15 8179
[18] Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804
[19] Zhang D, Lin L Z, Zhu J J 2014 Chin. Phys. Lett. 31 028102
[20] Zhou N G, Hong T, Zhou L 2012 Acta Phys. Sin. 61 028101 (in Chinese) [周耐根, 洪涛, 周浪 2012 物理学报 61 028101]
[21] Liu J, Guo F, Gao Y 2014 Acta Phys. Sin. 63 048501 (in Chinese) [刘静, 郭飞, 高勇 2014 物理学报 63 048501]
[22] Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 物理学报 62 107101]
[23] Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408
[24] Lassonen K, Car R 1991 Phys. Rev. B 43 6796
[25] Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57
[26] Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1
[27] Tian W Q, Yu M, Leahy C, Jayanthi C S, Wu S Y 2008 J. Comput. Theor. Nanosci. 6 1
[28] Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705
[29] Xin Z H, Zhang C Y, Yu M, Jayanthi C S, Wu S Y 2014 Comp. Mater. Sci. 84 49
[30] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[31] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
[32] Yang Y L, Xu X M 2012 Comp. Mater. Sci. 61 83
-
[1] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687
[2] Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D 2010 Chem. Commun. 46 3256
[3] Long M Q, Tang L, Wang D, Li Y, Shuai Z G 2011 ACS. Nano 5 2593
[4] Pei Y 2012 Physica B 407 4436
[5] Qian X, Ning Z, Li Y, Liu H, Ouyang C, Chen Q, Li Y 2012 Dalton Trans. 41 730
[6] Du H L, Deng Z B, L Z Y, Yin Y H, Yu L L, Wu H, Chen Z, Zou Y, Wang Y S, Liu H B, Li Y L 2011 Synth. Met. 161 2055
[7] Wang S, Yi L X, Halpert J E, Lai X Y, Liu Y Y, Cao H B, Yu R B, Wang D, Li Y L 2011 Small 8 265
[8] Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J 2011 J. Phys. Chem. C 115 2611
[9] Tongay S, Dag S, Durgun E, Senger R T, Ciraci S 2005 J. Phys. Condens. Mat. 17 3823
[10] Enyashin A N, Ivanovskii A L 2013 Superlat. Microstr- uct. 55 75
[11] Pei Y, Wu H B 2013 Chin. Phys. B 22 057303
[12] Özçelik V O, Ciraci S 2013 J. Phys. Chem. C 117 2175
[13] Yan X, Xin Z H, Zhang J J 2013 Acta Phys. Sin. 62 238101 (in Chinese) [颜笑, 辛子华, 张娇娇 2013 物理学报 62 238101]
[14] Cranford S W, Buehler M J 2011 Carbon 49 4111
[15] Kang J, Li J B, Wu F M, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466
[16] Zhang Y Y, Pei Q X, Wang C M 2012 Appl. Phys. Lett. 101 081909
[17] Cui H J, Sheng X L, Yan Q B, Zheng Q R, Su G 2013 Phys. Chem. Chem. Phys. 15 8179
[18] Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804
[19] Zhang D, Lin L Z, Zhu J J 2014 Chin. Phys. Lett. 31 028102
[20] Zhou N G, Hong T, Zhou L 2012 Acta Phys. Sin. 61 028101 (in Chinese) [周耐根, 洪涛, 周浪 2012 物理学报 61 028101]
[21] Liu J, Guo F, Gao Y 2014 Acta Phys. Sin. 63 048501 (in Chinese) [刘静, 郭飞, 高勇 2014 物理学报 63 048501]
[22] Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 物理学报 62 107101]
[23] Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408
[24] Lassonen K, Car R 1991 Phys. Rev. B 43 6796
[25] Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57
[26] Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1
[27] Tian W Q, Yu M, Leahy C, Jayanthi C S, Wu S Y 2008 J. Comput. Theor. Nanosci. 6 1
[28] Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705
[29] Xin Z H, Zhang C Y, Yu M, Jayanthi C S, Wu S Y 2014 Comp. Mater. Sci. 84 49
[30] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[31] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
[32] Yang Y L, Xu X M 2012 Comp. Mater. Sci. 61 83
Catalog
Metrics
- Abstract views: 6872
- PDF Downloads: 847
- Cited By: 0