-
Radiation displacement effect of BaTiO3 ferroelectric under epitaxial compressive strain is studied by using molecular dynamics simulations which is based on shell model. The numbers of defects, distributions and changes of polarization in the system are calculated before and after radiation under epitaxial compressive strains of 0, 0.4%, 0.8%, 1.2%, 1.6%, 2.0% respectively by using O atom of 1 keV and [001] direction as a primary konck-on atom (PKA). The damaged areas, the displacement distances of the defect, and migration distances of PKA under reverse applied electric field, obtained in the two cases: 2% compressive strain and no strain, are compared. The results show that the polarization of system increases almost linearly with increasing the epitaxial compressive strain, and that both the polarization amplitude and the number of defects decrease after irradiation. The displacement distance of defects under 2% compressive strain, migration distance of PKA under reverse applied electrical field and damaged area are all smaller than under no strain condition, which indicates that epitaxial compressive strain can suppress lattice irradiation damage, and the damage in BaTiO3 can be tuned by introducing epitaxial compressive strain.
-
Keywords:
- strain /
- BaTiO3 /
- radiation damage /
- molecular dynamics simulation
[1] Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083
[2] Moore R A, Benedetto J M, McGarrity J M, McLean F B 1991 IEEE Trans. Nucl. Sci. 38 1078
[3] Scott J F, Araujo C A, Meadows Brett H, McMillan L D, Shawabkeh A 1989 J. Appl. Phys. 66 1444
[4] Li Y S, Ma Y, Zhou Y C 2009 Appl. Phys. Lett. 94 042903
[5] Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734
[6] Yang S M, Kim T H, Yoon J G, Noh T W 2012 Adv. Funct. Mater. 22 2310
[7] Qiu J H, Ding J N, Yuan N Y, Wang X Q 2012 Chin. Phys. B 21 097701
[8] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecher R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005
[9] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758
[10] Zhang S, Ma Y, Zhou Y C 2012 J. Inorg. Mater. 27 1169 (in Chinese) [张思, 马颖, 周益春 2012 无机材料学报 27 1169]
[11] Yang Q, Cao J X, Ma Y, Zhou Y C, Jiang L M, Zhong X L 2013 J. Appl. Phys. 113 184110
[12] Schlom D G, Chen L Q, Darrell G, Pan X Q, Schmehl A, Zurbuchen M A 2008 J. Am. Ceram. Soc. 91 2429
[13] Wooding S J, Howe L M, Gao F, Calder A F, Bacon D J 1998 J. Nucl. Mater. 254 191
[14] Xu S Z, Hao Z M, Su Y Q, Hu W J, Yu Y, Wan Q 2012 Radiat Eff. Defects Solids 167 12
[15] Zhu Y, Li B H, Xie G F 2012 Acta Phys. Sin. 61 046103 (in Chinese) [朱勇, 李宝华, 谢国峰 2012 物理学报 61 046103]
[16] Fen S X, Li B H, Jin Q H, Guo Z Y, Ding D T 2000 Acta Phys. Sin. 49 2433 (in Chinese) [冯少新, 李宝会, 金庆华, 郭振亚, 丁大同 2000 物理学报 49 2433]
[17] Sepliarsky M, Tinte S. 2009 Phys. B: Condens Matter 404 2730
[18] Chen Y X, Xie G F, Ma Y, Zhou Y C 2009 Acta Phys. Sin. 58 4085 (in Chinese) [陈育祥, 谢国锋, 马颖, 周益春 2009 物理学报 58 4085]
[19] Ma Y, Sun L L, Zhou Y C 2011 Acta Phys. Sin. 60 046105 (in Chinese) [马颖, 孙玲玲, 周益春 2011 物理学报 60 046105]
[20] Chen Y X, Liu B N, Ma Y, Zhou Y C 2009 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. 267 3090
[21] www. ccp5. ac. uk /DL_POLY [2014.6.5]
[22] Xu H X 2010 Ph. D. Dissertation (Gainesville: University of Florida)
[23] Chen L, Xiong X M, Meng H, L P, Zhang J X 2006 Appl. Phys. Lett. 89 071916
[24] Warren W L, Tuttle B A, Dimos D 1995 Appl. Phys. Lett. 67 1426
-
[1] Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083
[2] Moore R A, Benedetto J M, McGarrity J M, McLean F B 1991 IEEE Trans. Nucl. Sci. 38 1078
[3] Scott J F, Araujo C A, Meadows Brett H, McMillan L D, Shawabkeh A 1989 J. Appl. Phys. 66 1444
[4] Li Y S, Ma Y, Zhou Y C 2009 Appl. Phys. Lett. 94 042903
[5] Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734
[6] Yang S M, Kim T H, Yoon J G, Noh T W 2012 Adv. Funct. Mater. 22 2310
[7] Qiu J H, Ding J N, Yuan N Y, Wang X Q 2012 Chin. Phys. B 21 097701
[8] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecher R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005
[9] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758
[10] Zhang S, Ma Y, Zhou Y C 2012 J. Inorg. Mater. 27 1169 (in Chinese) [张思, 马颖, 周益春 2012 无机材料学报 27 1169]
[11] Yang Q, Cao J X, Ma Y, Zhou Y C, Jiang L M, Zhong X L 2013 J. Appl. Phys. 113 184110
[12] Schlom D G, Chen L Q, Darrell G, Pan X Q, Schmehl A, Zurbuchen M A 2008 J. Am. Ceram. Soc. 91 2429
[13] Wooding S J, Howe L M, Gao F, Calder A F, Bacon D J 1998 J. Nucl. Mater. 254 191
[14] Xu S Z, Hao Z M, Su Y Q, Hu W J, Yu Y, Wan Q 2012 Radiat Eff. Defects Solids 167 12
[15] Zhu Y, Li B H, Xie G F 2012 Acta Phys. Sin. 61 046103 (in Chinese) [朱勇, 李宝华, 谢国峰 2012 物理学报 61 046103]
[16] Fen S X, Li B H, Jin Q H, Guo Z Y, Ding D T 2000 Acta Phys. Sin. 49 2433 (in Chinese) [冯少新, 李宝会, 金庆华, 郭振亚, 丁大同 2000 物理学报 49 2433]
[17] Sepliarsky M, Tinte S. 2009 Phys. B: Condens Matter 404 2730
[18] Chen Y X, Xie G F, Ma Y, Zhou Y C 2009 Acta Phys. Sin. 58 4085 (in Chinese) [陈育祥, 谢国锋, 马颖, 周益春 2009 物理学报 58 4085]
[19] Ma Y, Sun L L, Zhou Y C 2011 Acta Phys. Sin. 60 046105 (in Chinese) [马颖, 孙玲玲, 周益春 2011 物理学报 60 046105]
[20] Chen Y X, Liu B N, Ma Y, Zhou Y C 2009 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. 267 3090
[21] www. ccp5. ac. uk /DL_POLY [2014.6.5]
[22] Xu H X 2010 Ph. D. Dissertation (Gainesville: University of Florida)
[23] Chen L, Xiong X M, Meng H, L P, Zhang J X 2006 Appl. Phys. Lett. 89 071916
[24] Warren W L, Tuttle B A, Dimos D 1995 Appl. Phys. Lett. 67 1426
Catalog
Metrics
- Abstract views: 6463
- PDF Downloads: 456
- Cited By: 0