-
The high-quality growth of GaAs crystals is extremely essential for the fabrication of high-performance high-frequency microwave electronic devices and light-emitting devices. In this work, the molecular dynamics (MD) simulation is used to simulate the induced crystallization of GaAs crystal along the [110] orientation. The effects of strain on the growth process and defect formation are analyzed by the largest standard cluster analysis, the pair distribution function, and visualization analysis. The results indicate that the crystallization process of GaAs crystal changes significantly under different strain conditions. At the initial stage, the crystal growth rate of the system decreases after a certain tensile strain and a large compressive strain have been applied, and the greater the strain, the lower the crystallization rate is. In addition, as the crystal grows, the system forms a zigzag interface bounded by the {111} facet, and the angle between the growth plane and the {111} facet affects the morphology of the solid-liquid interface and further affects the formation of twins. The larger the applied tensile strain and the smaller the angle, the more twin defects will form and the more irregular they will be. At the same time, a large proportion of the dislocations in the system is associated with twins. The application of strain can either inhibit or promote the nucleation of dislocations, and under an appropriate amount of strain size, crystals without dislocations can even grow. The study of the microstructural evolution of GaAs on an atomic scale provides a reference for crystal growth theory.
-
Keywords:
- molecular dynamics /
- GaAs /
- induced crystallization /
- strain
[1] Santos Gomes B, Masia F 2022 Journal of Colloid and Interface Science 625 743Google Scholar
[2] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏 2019 物理学报 68 087803Google Scholar
Wang P H, Tang J L, Kang Y B, Fang X, Fang D, Wang D K, Lin F Y, Wang X H, Wei Z P 2019 Acta Phys. Sin. 68 087803Google Scholar
[3] Carter M A, Mottram A, Peaker A R, Sudlow P D, White T 1971 Nature 232 469Google Scholar
[4] Chuang L C, Sedgwick F G, Chen R, Ko W S, Moewe M, Ng K W, Tran T T D, Chang-Hasnain C 2011 Nano Lett. 11 385Google Scholar
[5] Currie M, Dianat P, Persano A, Martucci M C, Quaranta F, Cola A, Nabet B 2013 Sensors 13 2475Google Scholar
[6] Ukita H, Uenishi Y, Tanaka H 1993 Science 260 786Google Scholar
[7] Mangla O, Roy S 2020 Materials Letters 274 128036Google Scholar
[8] Papež N, Dallaev R, Ţălu Ş, Kaštyl J 2021 Materials 14 3075Google Scholar
[9] Ghalgaoui A, Reimann K, Woerner M, Elsaesser T, Flytzanis C, Biermann K 2018 Phys. Rev. Lett. 121 266602Google Scholar
[10] Whelan J M, Wheatley G H 1958 J. Phys. Chem. Solids 6 169Google Scholar
[11] Wu T, Wei J, Liu H, Ma S, Chen Y, Ren J 2021 Electronics 10 1482Google Scholar
[12] Murakami M 2002 Sci. Technol. Adv. Mater. 3 1Google Scholar
[13] Jiang P, Balram K C 2020 Opt. Express 28 12262Google Scholar
[14] Zhan L, Xia F, Xia Y, Xie B 2018 ACS Sustainable Chem. Eng. 6 1336Google Scholar
[15] Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078Google Scholar
[16] Shibuta Y, Sakane S, Miyoshi E, Okita S, Takaki T, Ohno M 2017 Nat. Communica. 8 10Google Scholar
[17] Jia T, Wang Z, Tang M, Xue Y, Huang G, Nie X, Lai S, Ma W, He B, Gou S 2022 Nanomaterials 12 611Google Scholar
[18] Thu H T T, Hoang V V 2010 Computa. Mater. Sci. 49 S221Google Scholar
[19] Luo J, Gao T, Ren L, Xie Q, Tian Z, Chen Q, Liang Y 2019 Mater. Sci. Semicon. Proc. 104 104680Google Scholar
[20] Gulluoglu A N, Zhu X, Tsai C T 2001 J. Mater. Sci. 36 3557Google Scholar
[21] Meduoye G O, Bacon D J, Evans K E 1988 J. Crystal Growth 88 397Google Scholar
[22] Subramanyam N, Tsai C T 1995 J. Mater. Proc. Technol. 55 278Google Scholar
[23] Zhu X A, Tsai C T 2004 Computa. Mater. Sci. 29 334Google Scholar
[24] Gulluoglu A N, Tsai C T, Hartley C S, Chait A 1994 Model. Simul. Mater. Sci. Eng. 2 67Google Scholar
[25] Pavia F, Curtin W A 2015 Model. Simul. Mater. Sci. Eng. 23 055002Google Scholar
[26] Plimpton S 1995 J. Computa. Phys. 117 1Google Scholar
[27] Albe K, Nordlund K, Nord J, Kuronen A 2002 Phys. Rev. B 66 035205Google Scholar
[28] Fichthorn K A, Tiwary Y, Hammerschmidt T, Kratzer P, Scheffler M 2011 Phys. Rev. B 83 195328Google Scholar
[29] 陈庆, 陈茜, 梁永超, 高廷红, 田泽安, 谢泉 2017 科学通报 62 1386Google Scholar
Chen Q, Chen Q, Liang Y C, Gao T H, Tian Z A, Xie Q 2017 Chin. Sci. Bulletin 62 1386Google Scholar
[30] Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar
[31] Tian Z A, Liu R S, Dong K J, Yu A B 2011 EPL 96 36001Google Scholar
[32] Terban M W, Billinge S J L 2022 Chem. Rev. 122 1208Google Scholar
[33] Tian Z A, Dong K J, Yu A B 2013 AIP Confer. Proc. 1542 373Google Scholar
[34] 韦国翠, 田泽安 2021 物理学报 70 246401Google Scholar
Wei G C, Tian Z A 2021 Acta Phys. Sin. 70 246401Google Scholar
[35] Hu L, Tian Z, Liang Y, Gao T, Chen Q, Zheng Q, Luo Y, Xie Q 2022 J. Alloys Compounds 897 162743Google Scholar
[36] Richert R, Angell C A 1998 J. Chem. Phys. 108 9016Google Scholar
[37] Capaccioli S, Prevosto D, Lucchesi M, Amirkhani M, Rolla P 2009 J. Non-Crystalline Solids 355 753Google Scholar
[38] Scott G D, Mader D L 1964 Nature 201 382Google Scholar
[39] Finney J L, Bernal J D 1997 Proc. Royal Society of London. A. Mathemat. Phys. Sci. 319 479Google Scholar
[40] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar
[41] Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007Google Scholar
[42] Liu C S, Xia J, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506Google Scholar
[43] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[44] Li D H, Moore R A, Wang S 1988 J. Chem. Phys. 89 4309Google Scholar
[45] Mitchell T E, Unal O 1991 J. Electro. Mater. 20 723Google Scholar
-
图 6 不同应变下GaAs诱导式结晶体系的微观结构演变过程 (蓝色原子代表闪锌矿结构原子; 黄色原子代表纤锌矿结构原子; 白色原子代表其他类型的无序原子)
Figure 6. Microstructural evolution of GaAs-induced crystallization systems at different strains (Blue atoms represent zinc-blende structure atoms; yellow atoms represent wurtzite structure atoms; white atoms are other types of disordered atoms).
参数 Ga—Ga As—As Ga—As γ 0.007874 0.455 0.0166 S 1.11 1.86 1.1417 d 0.75 0.1612 0.56 β/Å–1 1.08 1.435 1.5228 D0/eV 1.40 3.96 2.10 R0/Å 2.3235 2.10 2.35 c 1.918 0.1186 1.29 h = cosθ0 0.3013 0.07748 0.237 α/Å–1 1.846 3.161 0 Rc/Å 2.95 3.40 3.10 D/Å 0.15 0.20 0.20 -
[1] Santos Gomes B, Masia F 2022 Journal of Colloid and Interface Science 625 743Google Scholar
[2] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏 2019 物理学报 68 087803Google Scholar
Wang P H, Tang J L, Kang Y B, Fang X, Fang D, Wang D K, Lin F Y, Wang X H, Wei Z P 2019 Acta Phys. Sin. 68 087803Google Scholar
[3] Carter M A, Mottram A, Peaker A R, Sudlow P D, White T 1971 Nature 232 469Google Scholar
[4] Chuang L C, Sedgwick F G, Chen R, Ko W S, Moewe M, Ng K W, Tran T T D, Chang-Hasnain C 2011 Nano Lett. 11 385Google Scholar
[5] Currie M, Dianat P, Persano A, Martucci M C, Quaranta F, Cola A, Nabet B 2013 Sensors 13 2475Google Scholar
[6] Ukita H, Uenishi Y, Tanaka H 1993 Science 260 786Google Scholar
[7] Mangla O, Roy S 2020 Materials Letters 274 128036Google Scholar
[8] Papež N, Dallaev R, Ţălu Ş, Kaštyl J 2021 Materials 14 3075Google Scholar
[9] Ghalgaoui A, Reimann K, Woerner M, Elsaesser T, Flytzanis C, Biermann K 2018 Phys. Rev. Lett. 121 266602Google Scholar
[10] Whelan J M, Wheatley G H 1958 J. Phys. Chem. Solids 6 169Google Scholar
[11] Wu T, Wei J, Liu H, Ma S, Chen Y, Ren J 2021 Electronics 10 1482Google Scholar
[12] Murakami M 2002 Sci. Technol. Adv. Mater. 3 1Google Scholar
[13] Jiang P, Balram K C 2020 Opt. Express 28 12262Google Scholar
[14] Zhan L, Xia F, Xia Y, Xie B 2018 ACS Sustainable Chem. Eng. 6 1336Google Scholar
[15] Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078Google Scholar
[16] Shibuta Y, Sakane S, Miyoshi E, Okita S, Takaki T, Ohno M 2017 Nat. Communica. 8 10Google Scholar
[17] Jia T, Wang Z, Tang M, Xue Y, Huang G, Nie X, Lai S, Ma W, He B, Gou S 2022 Nanomaterials 12 611Google Scholar
[18] Thu H T T, Hoang V V 2010 Computa. Mater. Sci. 49 S221Google Scholar
[19] Luo J, Gao T, Ren L, Xie Q, Tian Z, Chen Q, Liang Y 2019 Mater. Sci. Semicon. Proc. 104 104680Google Scholar
[20] Gulluoglu A N, Zhu X, Tsai C T 2001 J. Mater. Sci. 36 3557Google Scholar
[21] Meduoye G O, Bacon D J, Evans K E 1988 J. Crystal Growth 88 397Google Scholar
[22] Subramanyam N, Tsai C T 1995 J. Mater. Proc. Technol. 55 278Google Scholar
[23] Zhu X A, Tsai C T 2004 Computa. Mater. Sci. 29 334Google Scholar
[24] Gulluoglu A N, Tsai C T, Hartley C S, Chait A 1994 Model. Simul. Mater. Sci. Eng. 2 67Google Scholar
[25] Pavia F, Curtin W A 2015 Model. Simul. Mater. Sci. Eng. 23 055002Google Scholar
[26] Plimpton S 1995 J. Computa. Phys. 117 1Google Scholar
[27] Albe K, Nordlund K, Nord J, Kuronen A 2002 Phys. Rev. B 66 035205Google Scholar
[28] Fichthorn K A, Tiwary Y, Hammerschmidt T, Kratzer P, Scheffler M 2011 Phys. Rev. B 83 195328Google Scholar
[29] 陈庆, 陈茜, 梁永超, 高廷红, 田泽安, 谢泉 2017 科学通报 62 1386Google Scholar
Chen Q, Chen Q, Liang Y C, Gao T H, Tian Z A, Xie Q 2017 Chin. Sci. Bulletin 62 1386Google Scholar
[30] Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar
[31] Tian Z A, Liu R S, Dong K J, Yu A B 2011 EPL 96 36001Google Scholar
[32] Terban M W, Billinge S J L 2022 Chem. Rev. 122 1208Google Scholar
[33] Tian Z A, Dong K J, Yu A B 2013 AIP Confer. Proc. 1542 373Google Scholar
[34] 韦国翠, 田泽安 2021 物理学报 70 246401Google Scholar
Wei G C, Tian Z A 2021 Acta Phys. Sin. 70 246401Google Scholar
[35] Hu L, Tian Z, Liang Y, Gao T, Chen Q, Zheng Q, Luo Y, Xie Q 2022 J. Alloys Compounds 897 162743Google Scholar
[36] Richert R, Angell C A 1998 J. Chem. Phys. 108 9016Google Scholar
[37] Capaccioli S, Prevosto D, Lucchesi M, Amirkhani M, Rolla P 2009 J. Non-Crystalline Solids 355 753Google Scholar
[38] Scott G D, Mader D L 1964 Nature 201 382Google Scholar
[39] Finney J L, Bernal J D 1997 Proc. Royal Society of London. A. Mathemat. Phys. Sci. 319 479Google Scholar
[40] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar
[41] Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007Google Scholar
[42] Liu C S, Xia J, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506Google Scholar
[43] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[44] Li D H, Moore R A, Wang S 1988 J. Chem. Phys. 89 4309Google Scholar
[45] Mitchell T E, Unal O 1991 J. Electro. Mater. 20 723Google Scholar
Catalog
Metrics
- Abstract views: 3427
- PDF Downloads: 93
- Cited By: 0