-
Multi-principal element alloys (MPEAs), also known as high-entropy alloys (HEAs), represent a class of novel materials that have garnered significant attention due to their exceptional mechanical properties, thermal stability, and resistance to wear and corrosion. These alloys are typically composed of multiple principal elements in near-equal atomic proportions, forming solid solution phases such as face-centered cubic (FCC) or body-centered cubic (BCC) structures. Despite the promising applications, a deeper understanding of the atomic-level behavior, particularly lattice distortion and atomic strain, is essential to better design and optimize these materials for extreme environments. This study focuses on systematically investigating the atomic-scale lattice distortion characteristics and their impact on atomic strain in three representative BCC-based MPEAs: TaWNbMo, TiZrNb, and CoFeNiTi. We utilize molecular dynamics (MD) simulations to explore the local atomic strain distributions in these alloys at various temperatures. Von Mises strain and volumetric strain are employed as key descriptors to quantify the atomic strain, providing a clear representation of how lattice distortion at the atomic level influences the overall strain behavior. The study specifically addresses the effects of atomic radius differences, chemical short-range ordering, and temperature on the strain characteristics of the alloys. Our results indicate that an increase in lattice distortion corresponds to a broader distribution of Von Mises strain and volumetric strain, with strain values significantly amplified. More precisely, alloys with larger atomic radius differences exhibit greater volumetric strain, reflecting the influence of atomic size disparity on strain distribution. Furthermore, the formation of chemical short-range order (CSRO) significantly mitigates lattice distortion and atomic strain. This finding highlights the importance of short-range atomic ordering in enhancing the stability of the alloy structures, thus potentially improving their mechanical properties. Temperature effects are also investigated, revealing that elevated temperatures induce more intense atomic vibrations, which in turn increase the atomic strain. The findings underscore the complex interplay between atomic-scale phenomena and macroscopic mechanical properties, offering new insights into the microscopic mechanical behavior of high-entropy alloys. This study contributes to a better understanding of the underlying mechanisms driving atomic strain and lattice distortion in MPEAs. The results provide valuable theoretical insights that can guide the design of high-performance alloys tailored for high-temperature and extreme environments. By addressing the key factors influencing atomic strain, such as atomic radius, chemical ordering, and temperature, this work lays the foundation for future research aimed at enhancing the mechanical performance of MPEAs in various industrial applications.
-
Keywords:
- Multi-principal element alloys /
- lattice distortion /
- atomic strain /
- molecular dynamics simulations
-
[1] George E P, Raabe D, Ritchie R O 2019Nat. Rev. Mater. 4 515
[2] George E P, Curtin W A, Tasan C C 2020Acta Mater. 188 435
[3] Miracle D B 2017J. Met. 69 2130
[4] Pickering E J, Jones N G 2016Int. Mater. Rev. 61 183
[5] Zhang Y, Zou T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014Prog. Mater. Sci. 61 1
[6] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299
[7] Li Z M, Pradeep K G, Deng F, Paabe D, Tasan C C 2016Nature 534 227
[8] Maresca F, Curtin W A 2020Acta Mater. 182 235
[9] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie P O 2014Science 3451153
[10] Shi Y Z, Yang B, Liaw P K 2017Metals 7 18
[11] Chen P Y, Lee C, Wang S Y, Seifi M, Lewandowski J J, Dahmen K A, Jia H L, Xie X, Chen B L, Yeh J W, Tsai C W, Yuan T, Liaw P K 2018Sci. China-Technol. Sci. 61 168
[12] Kozelj P, Vrtnik S, Jelen A, Jazbec S, Jaglicic Z, Maiti S, Feuerbacher M, Steurer W, Dolinsek J 2014Phys. Rev. Lett. 1135
[13] Su Z X, Ding J, Song M, Jiang L, Shi Tan, Li Z M, Wang S, Gao F, Ma E Lu C Y 2023 Acta Mater. 245 1359
[14] Zhang Z, Su Z, Zhang B, Yu Q, Ding J, Shi T, Lu C, Ritchie R O, Ma E 2023Proc. Natl. Acad. Sci. 120116535
[15] Zhang Y, Zuo T, Tang T, Gao M, Dahmen K, Liaw K, Lu Z 2014Prog. Mater. Sci. 61 1
[16] Kozak P, Sologubenko A, Steurer W 2105 Z Kristallogr Cryst Mater 230 55
[17] Pickering E J, Jones N G 2016Int. Mater. Rev. 61 183
[18] Miracle D B, Senkov O N 2017Acta Mater. 122 448
[19] Fan Z, Wang H, Wu Y, Liu X, Lu Z 2017Mater. Res. Lett. 5 187
[20] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41
[21] Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, Chang S Y 2005Metall. Mater. Trans. A. 36 881
[22] Tsai C W, Tsai M H, Yeh J W, Yang C C 2010J. Alloys Compd. 490 160
[23] Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang S Y 2004Metall. Mater. Trans. A. 35 2533
[24] Yang Y, He Q F 2021Acta Metall. Sin. 57 385
[25] Zou Y, Maiti S, Steurer W, Spolenak R 2014Acta Mater. 6585
[26] Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J,Neuefeind J C, Tang Z, Liaw P K 2015 Nat. Commun. 6 5964
[27] Toda-Caraballo I, Wr obel J S, Dudarev S L, Nguyen-Manh D, Rivera-Díaz-del-Castillo P E 2015Acta Mater. 97 156
[28] Tian L Y, Hu Q M, Yang R, Zhao J, Johansson B, Vitos L 2015J. Phys. Condens. Matter 27 315702
[29] Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023Scr. Mater. 222 115048
[30] Tandoc C, Hu Y J, Qi L, Liaw P K 2023npj Comput Mater 9 53
[31] Plimpton S 1995 J. Comput. Phys. 117 1
[32] Yin S, Zuo Y X, Abu-Odeh A,Zhang H, Li X G, Ding J, Ong S P, Asta M, Ritchie R 2021Nat.Commun. 12 4873
[33] Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2020Proc. Natl. Acad. Sci. 28 117
[34] Stukowski A 2009Model. Simul. Mater. Sc 18 015012
[35] Wang J H, Li J, Yip S, Phillpot S, Wolf D 1995Phys. Rev. B 52 12627
[36] Li J 2003Model. Simul. Mater. Sci. Eng. 11 173
[37] Wang L, Ding J, Chen S S, Jin K, Zhang Q H, Cui J X, Wang B P, Chen B, Li T Y, Ren Y, Zheng S J, Ming K S, Lu W J, Hou J H, Sha G, Liang J, Wang L, Xue Y F, Ma E 2023Nat. Mater. 22 950
[38] Zhang M, Zhang B Z, Ding J, Ma E 2025Scripta Mater. 259 116559
[39] Ding J, Yu Q, Asta M, O.Ritchie R 2018Proc. Natl. Acad. Sci. 115 8919
[40] Zhang F X, Zhao S J, Jin K, Xue H, Velisa G, Bei H, Huang R, Ko J Y P, Pagan D C, Neuefeind J C, Weber W J, Zhang Y W 2017 Phys. Rev. Lett. 118 05501
[41] Zhang R P, Zhao S T, Ding J, Chong Y, Jia T, Ophus C, Asta M, O.Ritchie R, Minor M A. 2020Nature 581 283
[42] Xun K H, Zhang B Z, Wang Q, Zhang Z, Ding J, Ma E 2023J. Mater. Sci. Technol. 135 221
[43] Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2024Acta. Mater. 272 119910
[44] He Q F, Wang J G, Chen H A, Ding Z Y, Zhou Z Q, Xiong L H, Luan J H, Pelletier J M, Qiao J C, Wang Q, Fan L L, Zeng Q S, Liu C T, Pao C W, Srolovitz D J, Yang Y 2022Nature 602 251
[45] Tan Y Y, Chen Z J, Su M Y, Ding G, Jiang M Q, Xie Z C, Gong Y, Wu T, Wu Z H, Wang H Y, Dai L H 2022J. Mater. Sci. Technol. 104 236
Metrics
- Abstract views: 64
- PDF Downloads: 0
- Cited By: 0