-
InAs/InAlAs/InP(001) nanostructure materials are grown using solid-source molecular beam epitaxy equipment. Effect of As pressure-modulated InAlAs superlattice on the morphology of InAs nanostructure is investigated. The results show that As pressure-modulated InAlAs superlattice can suppress the quantum wires formation and results in quantum dot growth with a uniform size distribution. The analysis indicates that the morphology of InAs nanostructure is caused mainly by the anisotropic strain relaxation of InAlAs layers and the anisotropic surface migration of In adatoms.
-
Keywords:
- InAlAs superlattice /
- InAs nanastructures /
- As pressure-modulated
[1] Arakawa Y, Sakaki H 1998 Appl. Phys. Lett. 40 939
[2] Zhang S Z, Ye X L, Xu B, Liu S M, Zhou W F, Wang Z G 2013 Chin. Phys. Lett. 30 087804
[3] L X Q, Jin P, Chen H M, Wu Y H, Wang F F, Wang Z G 2013 Chin. Phys. Lett. 30 118102
[4] Weber A, Gauthier-Lafaye O, Julien F H, Brault J, Gendry M, Desiéres Y, Benyattou T 1999 Appl. Phys. Lett. 74 413
[5] Finkman E, Maimon S, Immer V, Bahir G, Schacham S E, Fossard F, Julien F H, Brault J, Gendry M 2001 Phys. Rev. B 63 045323
[6] Shin B, Lin A, Lappo K, Goldman R S, Hanna M C, Francoeur S, Norman A G, Mascarenhas A 2002 Appl. Phys. Lett. 80 3292
[7] Zhao F A, Chen Y H, Ye X L, Jin P, Xu B, Wang Z G, Zhang C L 2004 J. Phys. Condens. Matter 16 7603
[8] Li Y F, Lin F, Xu B, Liu F Q, Ye X L, Ding D, Wang Z G 2001 J. Cryst. Growth 223 518
[9] Fafard S, Wasilewski Z, McLaffrey J, Raymond S 1996 Appl. Phys. Lett. 68 991
[10] Li H X, Wu J, Wang Z G 1999 Appl. Phys. Lett. 75 1173
[11] Strel V V, Lytvyn P M, Kolomys A F, Valakh M Y, Mazur Y I, Wang Z M, Salamo G J 2007 Semiconductor 4173
[12] Jiao Y H, Wu J, Xu B, Jin P, Hu L J, Liang L Y, Ren Y Y, Wang Z G 2006 Nanotechnology 17 5846
[13] Zhang Z H, Cheng K Y 2003 Appl. Phys. Lett. 83 3183
[14] Brault J, Gendry M, Grenet G 2002 J. Appl. Phys. 92 506
[15] Zhang S B, Zunger A 1996 Phys. Rev. B 53 1343
[16] Cotta M A, Hamm R A, Staley T W, Chu S N G, Harriott L R, Panish M B 1993 Phys. Rev. Lett. 70 4106
[17] Horikoshi Y, Yamaguchi H, Briones F, Kawashima M 1990 J. Cryst. Growth 105 326
[18] Praseuth J P, Goldstein L, Henoc P, Primot J 1987 J. Appl. Phys. 61 215
[19] Konkar A, Madhukar A, Chen P 1998 Appl. Phys. Lett. 72 220
[20] Glas F 1987 J. Appl. Phys. 62 3201
-
[1] Arakawa Y, Sakaki H 1998 Appl. Phys. Lett. 40 939
[2] Zhang S Z, Ye X L, Xu B, Liu S M, Zhou W F, Wang Z G 2013 Chin. Phys. Lett. 30 087804
[3] L X Q, Jin P, Chen H M, Wu Y H, Wang F F, Wang Z G 2013 Chin. Phys. Lett. 30 118102
[4] Weber A, Gauthier-Lafaye O, Julien F H, Brault J, Gendry M, Desiéres Y, Benyattou T 1999 Appl. Phys. Lett. 74 413
[5] Finkman E, Maimon S, Immer V, Bahir G, Schacham S E, Fossard F, Julien F H, Brault J, Gendry M 2001 Phys. Rev. B 63 045323
[6] Shin B, Lin A, Lappo K, Goldman R S, Hanna M C, Francoeur S, Norman A G, Mascarenhas A 2002 Appl. Phys. Lett. 80 3292
[7] Zhao F A, Chen Y H, Ye X L, Jin P, Xu B, Wang Z G, Zhang C L 2004 J. Phys. Condens. Matter 16 7603
[8] Li Y F, Lin F, Xu B, Liu F Q, Ye X L, Ding D, Wang Z G 2001 J. Cryst. Growth 223 518
[9] Fafard S, Wasilewski Z, McLaffrey J, Raymond S 1996 Appl. Phys. Lett. 68 991
[10] Li H X, Wu J, Wang Z G 1999 Appl. Phys. Lett. 75 1173
[11] Strel V V, Lytvyn P M, Kolomys A F, Valakh M Y, Mazur Y I, Wang Z M, Salamo G J 2007 Semiconductor 4173
[12] Jiao Y H, Wu J, Xu B, Jin P, Hu L J, Liang L Y, Ren Y Y, Wang Z G 2006 Nanotechnology 17 5846
[13] Zhang Z H, Cheng K Y 2003 Appl. Phys. Lett. 83 3183
[14] Brault J, Gendry M, Grenet G 2002 J. Appl. Phys. 92 506
[15] Zhang S B, Zunger A 1996 Phys. Rev. B 53 1343
[16] Cotta M A, Hamm R A, Staley T W, Chu S N G, Harriott L R, Panish M B 1993 Phys. Rev. Lett. 70 4106
[17] Horikoshi Y, Yamaguchi H, Briones F, Kawashima M 1990 J. Cryst. Growth 105 326
[18] Praseuth J P, Goldstein L, Henoc P, Primot J 1987 J. Appl. Phys. 61 215
[19] Konkar A, Madhukar A, Chen P 1998 Appl. Phys. Lett. 72 220
[20] Glas F 1987 J. Appl. Phys. 62 3201
Catalog
Metrics
- Abstract views: 5325
- PDF Downloads: 235
- Cited By: 0