Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning the spin, chirality, and adsorption site of metal-phthalocyanine on Au(111) surface with hydrogen atoms

Xiao Wen-De Liu Li-Wei Yang Kai Zhang Li-Zhi Song Bo-Qun Du Shi-Xuan Gao Hong-Jun

Citation:

Tuning the spin, chirality, and adsorption site of metal-phthalocyanine on Au(111) surface with hydrogen atoms

Xiao Wen-De, Liu Li-Wei, Yang Kai, Zhang Li-Zhi, Song Bo-Qun, Du Shi-Xuan, Gao Hong-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Metal-phthalocyanines (MPcs) and their derivates have attracted increasing interest in recent years, due to their potential applications in molecular electronics, spintronics, sensors, and so on. To this end, it is essential to tune the structural, electronic and spin properties of MPcs. Using the low-temperature scanning tunneling microscopy (LT-STM), we demonstrate that the spin, chirality and adsorption site of MnPc on Au(111) surface can be tuned by hydrogen atoms. STM experiments and density functional theory (DFT) calculations reveal that the preferential adsorption sites for the MnPc molecules may switch from the fcc regions to the hcp regions on the Au(111) surface after a hydrogen atom is adsorbed on top of the central Mn ion of each MnPc molecule. Moreover, the molecular spin decreases from S=3/2 to S=1 and the molecule-substrate coupling is weakened after the adsorption of a hydrogen atom on a MnPc molecule, leading to the quenching of Kondo effect at 4.2 K. However, the molecular spin and Kondo effect can be recovered by local voltage pulse or sample heating. Adsorption of three hydrogen atoms on a MnPc molecule not merely lowers the molecular symmetry from 4-to 2-fold, but also breaks down the mirror symmetry of the entire adsorbate complex (molecule and surface), thus rendering it to become chiral without any realignment at the surface. Dehydrogenation of the adsorbate by means of inelastic electron tunneling can also restore the mirror symmetry of the adsorbate complex. STM experiments as well as DFT calculations show that the chirality is actually imprinted into the molecular electronic system by the surface, i.e., the lowest unoccupied orbital is devoid of mirror symmetry. Our novel reversible spin and hand control scheme can be easily realized at single-molecule level, thus opening up a new avenue to broader applications based on the molecular electronic and spin states.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB929103, 2011CB921702), and the National Natural Science Foundation of China (Grant Nos. 20973196, 10834011, 60921092).
    [1]

    Aradhya S V, Venkataraman L 2013 Nature Nanotech. 8 399

    [2]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [3]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [4]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57

    [5]

    Liao M S, Scheiner S 2001 J. Chem. Phys. 114 9780

    [6]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542

    [7]

    Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F, Xue Q K 2007 Phys. Rev. Lett. 99 256601

    [8]

    Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C, Gao H J 2007 Phys. Rev. Lett. 99 106402

    [9]

    Wang Y F, Kröger J, Berndt R, Hofer W A 2009 J. Am. Chem. Soc. 131 3639

    [10]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Scientific Reports 3 1210

    [11]

    Liu L W, Yang K, Xiao W D, Jiang Y H, Song B Q, Du S X, Gao H J 2013 Appl. Phys. Lett. 103 023110

    [12]

    Yang K, Liu L W, Zhang L Z, Xiao W D, Fei X M, Chen H, Du S X, Ernst K H, Gao H J 2014 ACS Nano 8 2246

    [13]

    Kresse G 1995 Phys. Rev. B 47 558(R)

    [14]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [15]

    Barth J V, Brune H, Ertl G, Behm R J 1990 Phys. Rev. B 42 9307

    [16]

    Jiang Y H, Liu L W, Yang K, Xiao W D, Gao H J 2011 Chin. Phys. B 20 096401

    [17]

    Jiang Y H, Xiao W D, Liu L W, Zhang L Z, Lian J C, Yang K, Du S X, Gao H J 2011 J. Phys. Chem. C 115 21750

    [18]

    Mao J H, Zhang H G, Jiang Y H, Pan Y, Gao M, Xiao W D, Gao H J 2009 J. Am. Chem. Soc. 131 14136

    [19]

    Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X, Gao H J 2012 J. Phys. Chem. C 116 14052

    [20]

    Mao H K, Hemley R J 1994 Rev. Mod. Phys. 66 671

    [21]

    Gupta J A, Lutz C P, Heinrich A J, Eigler D M 2005 Phys. Rev. B 71 115416

    [22]

    Yang K, Xiao W D, Liu L W, Fei X M, Chen H, Du S X, Gao H J 2014 Nano Research 7 79

    [23]

    Xiao W D, Ruffieux P, Ait-Mansour K, Gröning O, Palotas K, Hofer W A, Gröning P, Fasel R 2006 J. Phys. Chem. B 110 21394

    [24]

    Böhringer M, Morgenstern K, Schneider W D, Whn M, Wöll C, Berndt R 2000 Surf. Sci. 444 199

    [25]

    Cheng Z H, Gao L, Deng Z T, Jiang N, Liu Q, Shi D X, Du S X, Guo H M, Gao H J 2007 J. Phys. Chem. C 111 9240

    [26]

    Fernandez-Torrente I, Monturet S, Franke K J, Fraxedas J, Lorente N, Pascual J I 2007 Phys. Rev. Lett. 99 176103

    [27]

    Fano U 1961 Phys. Rev. 124 1866

    [28]

    Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998

    [29]

    Hewson A C 1993 The Kondo problem to heavy fermions (Cambridge University Press)

  • [1]

    Aradhya S V, Venkataraman L 2013 Nature Nanotech. 8 399

    [2]

    Bogani L, Wernsdorfer W 2008 Nature Mater. 7 179

    [3]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [4]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57

    [5]

    Liao M S, Scheiner S 2001 J. Chem. Phys. 114 9780

    [6]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542

    [7]

    Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F, Xue Q K 2007 Phys. Rev. Lett. 99 256601

    [8]

    Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C, Gao H J 2007 Phys. Rev. Lett. 99 106402

    [9]

    Wang Y F, Kröger J, Berndt R, Hofer W A 2009 J. Am. Chem. Soc. 131 3639

    [10]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Scientific Reports 3 1210

    [11]

    Liu L W, Yang K, Xiao W D, Jiang Y H, Song B Q, Du S X, Gao H J 2013 Appl. Phys. Lett. 103 023110

    [12]

    Yang K, Liu L W, Zhang L Z, Xiao W D, Fei X M, Chen H, Du S X, Ernst K H, Gao H J 2014 ACS Nano 8 2246

    [13]

    Kresse G 1995 Phys. Rev. B 47 558(R)

    [14]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [15]

    Barth J V, Brune H, Ertl G, Behm R J 1990 Phys. Rev. B 42 9307

    [16]

    Jiang Y H, Liu L W, Yang K, Xiao W D, Gao H J 2011 Chin. Phys. B 20 096401

    [17]

    Jiang Y H, Xiao W D, Liu L W, Zhang L Z, Lian J C, Yang K, Du S X, Gao H J 2011 J. Phys. Chem. C 115 21750

    [18]

    Mao J H, Zhang H G, Jiang Y H, Pan Y, Gao M, Xiao W D, Gao H J 2009 J. Am. Chem. Soc. 131 14136

    [19]

    Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X, Gao H J 2012 J. Phys. Chem. C 116 14052

    [20]

    Mao H K, Hemley R J 1994 Rev. Mod. Phys. 66 671

    [21]

    Gupta J A, Lutz C P, Heinrich A J, Eigler D M 2005 Phys. Rev. B 71 115416

    [22]

    Yang K, Xiao W D, Liu L W, Fei X M, Chen H, Du S X, Gao H J 2014 Nano Research 7 79

    [23]

    Xiao W D, Ruffieux P, Ait-Mansour K, Gröning O, Palotas K, Hofer W A, Gröning P, Fasel R 2006 J. Phys. Chem. B 110 21394

    [24]

    Böhringer M, Morgenstern K, Schneider W D, Whn M, Wöll C, Berndt R 2000 Surf. Sci. 444 199

    [25]

    Cheng Z H, Gao L, Deng Z T, Jiang N, Liu Q, Shi D X, Du S X, Guo H M, Gao H J 2007 J. Phys. Chem. C 111 9240

    [26]

    Fernandez-Torrente I, Monturet S, Franke K J, Fraxedas J, Lorente N, Pascual J I 2007 Phys. Rev. Lett. 99 176103

    [27]

    Fano U 1961 Phys. Rev. 124 1866

    [28]

    Tersoff J, Hamann D R 1983 Phys. Rev. Lett. 50 1998

    [29]

    Hewson A C 1993 The Kondo problem to heavy fermions (Cambridge University Press)

  • [1] Peng Lan-Qin, Li Xiao-Yu, Xing Yun, Zhao Han, Deng Yan-Tao, Yu Ying-Hui. Adsorption configuration and assembly structure of vanadyl phthalocyanine molecule on copper oxide layer. Acta Physica Sinica, 2024, 73(12): 120704. doi: 10.7498/aps.73.20240043
    [2] Li Xiao-Yu, Peng Lan-Qin, Zhao Han, Xing Yun, Deng Yan-Tao, Yu Ying-Hui. Assembly of multilayer phthalocyanine vanadium oxide molecules on Ag2Sb alloy monolayer. Acta Physica Sinica, 2024, 73(11): 110702. doi: 10.7498/aps.73.20232004
    [3] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [4] Yao Jie, Zhao Ai-Di. Advances in detection and regulation of surface-supported molecular quantum states. Acta Physica Sinica, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [5] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [6] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [7] Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun. Intercalation and its mechanism of high quality large area graphene on metal substrate. Acta Physica Sinica, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [8] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [9] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [10] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [11] Feng Wei, Zhao Ai-Di. STM study of single cobalt atoms and clusters adsorbed on Rh (111) and Pd (111). Acta Physica Sinica, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [12] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [13] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [14] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [15] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [16] Hao Wan-Jun, Li Chang, Wei Ying-Jin, Chen Gang, Xu Wu. Transformation of electronic state of Co3+ and its influence on the structural development in Li(AlxCo1-x)O2. Acta Physica Sinica, 2003, 52(4): 1023-1027. doi: 10.7498/aps.52.1023
    [17] YAN LONG, ZHANG YONG-PING, PENG YI-PING, PANG SHI-JIN, GAO HONG-JUN. THE PREFERENTIAL ADSORPTION OF Ge ON Si(111)7×7 SURFACE. Acta Physica Sinica, 2001, 50(11): 2132-2136. doi: 10.7498/aps.50.2132
    [18] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [19] LI QUN-XIANG, YANG JIN-LONG, LI ZHEN-YU, HOU JIAN-GUO, ZHU QING-SHI. A FIRST-PRINCIPLES STUDY ON THE ELECTRONIC STRUCTURE OF THE FIRST TRANSITION METAL PHTHALOCYANINES. Acta Physica Sinica, 2001, 50(10): 1877-1883. doi: 10.7498/aps.50.1877
    [20] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
Metrics
  • Abstract views:  8211
  • PDF Downloads:  677
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2015
  • Accepted Date:  06 February 2015
  • Published Online:  05 April 2015

/

返回文章
返回