Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband energy harvesting from coherence resonance of a piezoelectric bistable system and its experimental validation

Lan Chun-Bo Qin Wei-Yang Li Hai-Tao

Citation:

Broadband energy harvesting from coherence resonance of a piezoelectric bistable system and its experimental validation

Lan Chun-Bo, Qin Wei-Yang, Li Hai-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Piezoelectric effect is an effective way of harvesting energy from the environmental broadband vibration. In this paper, we investigate the coherence resonance of a piezoelectric bistable vibration energy harvester theoretically and experimentally. The device is comprised of a cantilever beam with magnetic repulsive force. Firstly, the electromechanical coupled equation is derived based on the Euler-Bernoulli beam theory. Then, analyzing the potential shapes, we learn that when the system oscillates between the two potential wells, it will produce a large voltage generally. And the beam dynamic response under the random excitation is simulated by Euler-Maruyama method. The results of simulations and experiments show that there is a coherence resonance threshold in the Duffing type piezoelectric bistable energy harvester. When the standard deviation of the random excitation is less than the threshold, the motion state of the system will be trapped in a single potential well, which results in a low average output power. And when the excitation standard deviation is larger than the threshold, the system stochastic stability will change. The dynamic displacement and strain clearly show that the system can exhibit large oscillation between the two potential wells. Then, Kramers rate is used to explain the coherence resonance threshold of the bistable system under the broadband random excitation. The experimental results show that when the coherence resonance takes place, the beam will oscillate between the two potential wells more frequently, and the broadband vibration energy can be transformed into large amplitude narrow band low-frequency oscillation response, which can greatly improve the harvesting effectiveness of broadband vibration energy.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11172234).
    [1]

    Harne R L, Wang K W 2013 Smart Mater. Struct. 22 023001

    [2]

    Erturk A, Hoffmann J, Inman D J 2009 Appl. Phys. Lett. 94 254102

    [3]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [4]

    Ferrari M, Ferrari V, Guizzetti M, Ando B, Baglio S, Trigona C 2010 Sens. Actuators. A 162 425

    [5]

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505 (in Chinese) [孙舒, 曹树谦 2012 物理学报 61 210505]

    [6]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003

    [7]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [8]

    Erturk A, Inman D J 2011 J. Sound Vib. 330 2339

    [9]

    Masana R, Daqaq M F 2013 J. Sound Vib. 332 6755

    [10]

    Friswell M I, Ali S F, Bilgen O, Adhikari S, Lees A W, Litak G 2012 J. Intel. Mater. Syst. Struct. 23 1505

    [11]

    McInnes C R, Gorman D G, Cartmell M P 2008 J. Sound Vib. 318 655

    [12]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese) [陈仲生, 杨拥民 2011 物理学报 60 074301]

    [13]

    Zheng R C, Nakano K, Hu H G, Su D X, Cartmell M P 2014 J. Sound Vib. 333 2568

    [14]

    Litak G, Friswell M I, Adhikari S 2010 Appl. Phys. Lett. 96 214103

    [15]

    Ali S F, Adhikari S, Friswell M I, Narayanan S 2011 J. Appl. Phys. 109 074904

    [16]

    Li H T, Qin W Y 2014 Acta Phys. Sin. 63 120505 (in Chinese) [李海涛, 秦卫阳 2014 物理学报 63 120505]

    [17]

    Cyrill B M 2005 Physica D 210 227

    [18]

    Pikovsky A S, Kurths J 2005 Phys. Rev. Lett 95 123903

  • [1]

    Harne R L, Wang K W 2013 Smart Mater. Struct. 22 023001

    [2]

    Erturk A, Hoffmann J, Inman D J 2009 Appl. Phys. Lett. 94 254102

    [3]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [4]

    Ferrari M, Ferrari V, Guizzetti M, Ando B, Baglio S, Trigona C 2010 Sens. Actuators. A 162 425

    [5]

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505 (in Chinese) [孙舒, 曹树谦 2012 物理学报 61 210505]

    [6]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003

    [7]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [8]

    Erturk A, Inman D J 2011 J. Sound Vib. 330 2339

    [9]

    Masana R, Daqaq M F 2013 J. Sound Vib. 332 6755

    [10]

    Friswell M I, Ali S F, Bilgen O, Adhikari S, Lees A W, Litak G 2012 J. Intel. Mater. Syst. Struct. 23 1505

    [11]

    McInnes C R, Gorman D G, Cartmell M P 2008 J. Sound Vib. 318 655

    [12]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese) [陈仲生, 杨拥民 2011 物理学报 60 074301]

    [13]

    Zheng R C, Nakano K, Hu H G, Su D X, Cartmell M P 2014 J. Sound Vib. 333 2568

    [14]

    Litak G, Friswell M I, Adhikari S 2010 Appl. Phys. Lett. 96 214103

    [15]

    Ali S F, Adhikari S, Friswell M I, Narayanan S 2011 J. Appl. Phys. 109 074904

    [16]

    Li H T, Qin W Y 2014 Acta Phys. Sin. 63 120505 (in Chinese) [李海涛, 秦卫阳 2014 物理学报 63 120505]

    [17]

    Cyrill B M 2005 Physica D 210 227

    [18]

    Pikovsky A S, Kurths J 2005 Phys. Rev. Lett 95 123903

Metrics
  • Abstract views:  5415
  • PDF Downloads:  476
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2014
  • Accepted Date:  27 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回