-
To address the issues of high dynamic power consumption and substantial occupation of silicon integration resources in traditional capacitor-containing neuronal circuits, this study proposes a capacitor-free neuronal circuit based on a charge-controlled memristor. By taking the intrinsic parameters of the charge-controlled memristor as the reference for scaling transformation, dimensionless dynamical equations were derived. The local asymptotic stability of the system was verified using Jacobian matrix eigenvalue decomposition and the Routh-Hurwitz criterion. Gaussian white noise was introduced to simulate interference for detecting coherent resonance, while energy characteristics were analyzed by combining Hamiltonian energy formulas and resistance energy consumption expressions. Additionally, the fourth-order Runge-Kutta method was employed to conduct numerical simulations.
The research results indicate that external stimuli, ionic channel conductance, and reversal potential can flexibly regulate the periodic/chaotic firing modes of the neuron. In the periodic state, the proportion of electric field energy of the charge-controlled memristor in the total energy is higher; in the chaotic state, however, the proportion of magnetic field energy of the inductive coils increases. The circuit exhibits coherent resonance under the influence of noise, and resistor is the main energy-consuming component. The conclusion confirms that the circuit is feasible in principle, with rich dynamical characteristics and good noise robustness. Changing the resistance value can improve energy efficiency while retaining multiple firing modes, which provides theoretical support and an optimization direction for the design of high-integration, low-power neuromorphic computing circuits.-
Keywords:
- Memristive neural circuits /
- Stability analysis /
- Coherent resonance /
- Energy consumption control
-
[1] Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569
[2] Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500
[3] Fitzhugh R 1960 J. Gen. Physiol. 43 867
[4] Feali M S 2025 AEU-Int. J. Electron. Commun. 191 155679
[5] Harerimana G, Kim I G, Kim J W, Jang B 2023 IEEE Access 11 106334
[6] Chen C A, Mathalon D H, Roach B J, Cavus I, Spencer D D, Ford J M 2011 J. Cogn. Neurosci. 23 2892
[7] Montano N, Furlan R, Guzzetti S, McAllen R M, Julien C 2009 Phil. Trans. R. Soc. A 367 1265
[8] Shao J, Liu Y H, Gao D S, Tu J, Yang F 2021 Front. Cell. Neurosci. 15 741292
[9] Koch N A, Sonnenberg L, Hedrich U B, Lauxmann S, Benda J 2023 Front. Neurol. 14 1194811
[10] Dai Y, Cheng Y, Fedirchuk B, Jordan L M, Chu J H 2018 J. Neurophysiol. 120 1840
[11] Velasco E, Alvarez J L, Meseguer V M, Gallar J, Talavera Karel 2022 Pain 163 64
[12] Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171
[13] Xu Y H, Zhang S, Zhao Q Y, You S N, Dun W J, Zhao M K, Xu G Z 2023 Life Sci. Instrum. 21 64 [徐亦豪,张帅,赵清扬,由胜男,杜文静2023生命科学仪器21 64]
[14] Bao H, Xi M Q, Tang H G, Zhang X, Xu Q, Bao B C 2025 IEEE Trans. Ind. Inform. 21 1862
[15] Zhang D K, Li Y Q, Rasch M J, Wu S 2013 Front. Comput. Neurosci. 7 56
[16] Kobylarz T J, Kobylarz E J 2021 Clin. Neurophysiol. 132 e1
[17] Wang Y Q, Ding G H, Yao W 2023 Applied Math 3 758
[18] Yuan Z X, Feng P H, Fan Y C, Yu Y Y, Wu Y 2022 Cogn. Neurodyn. 16 183
[19] Zhang S, Cui K, Shi X, Wang Z, Xu G Z 2019 Trans. China Electrotech. Soc. 34 3741 [张帅,崔琨,史勋,王卓,徐桂芝2019电工技术学报34 3741]
[20] Yang F F, Song X L, Yu Z H 2024 Chaos Soliton. Fract. 188 115496
[21] Chen Y X, Guo Q, Zhang X F, Wang C N 2024 Chaos Soliton. Fract. 189 115738
[22] Kumar P, Erturk V S 2025 Chin. Phys. B 34 018704
[23] Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473
[24] Hodgkin, A L, Huxley, A F 1952 J. Physiol. 116 497
[25] FitzHugh R 1961 Biophys. J.1 445
[26] Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061
[27] Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063
[28] Izhikevich E M, Edelman G M 2008 Proc. Natl. Acad. Sci. U.S.A. 105 3593
[29] Li X Y, Min F H, Xiang W K, Cao Y 2023 J. Nanjing Norm. Univ. (Eng. Technol. Ed.) 23 1 [李馨雅,闵富红,相惟康,曹弋 2023南京师范大学学报(工程技术版)23 1]
[30] Bao H, Zhang J, Wang N, Kuznetsov NV, Bao B C 2022 Chaos 32 123101
[31] Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502 [王世场,卢振洲,梁燕,王光义2022物理学报 71 050502]
[32] Zhang S H, Wang C, Zhang H L, Lin H R 2023 Chaos 33 083138
[33] Jeyasothy A, Sundaram S, Sundarajan N 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 1231
[34] Wang B C, Lv M, Zhang X, Ma J 2024 Phys. Scr. 99 055225
[35] Jia J E, Yang F F, Ma J 2024 Chaos Soliton. Fract. 173 113689
[36] Jia J E, Wang C N, Ren G D 2025 Chin. J. Phys. 95 978
[37] Li R H, Ding R H. 2021 Int. J. Mod. Phys. B 35 2150166
[38] Xu L, Qi G, Ma J 2022 Appl. Math. Model. 101 503
[39] Yakopcic C, Hasan R, Taha T M, McLean M, Palmer D 2014 Electron. Lett. 50 492
[40] Shi S Y, Liang Y, Li Y Q, Lu Z Z, Dong Y J 2024 Chaos Soliton. Fract. 180 114534
[41] Shen H, Yu F, Wang C H, Sun J R, Cai S 2022 Nonlinear Dyn. 110 3807
[42] Miranda E, Sune J 2020 Materials 13 938
[43] Yang F F, Ma J, Wu F Q 2024 Chaos Soliton. Fract. 187 115361
[44] Li Y N, Guo Q, Wang C N, Ma J 2024 Commun. Nonlinear Sci. Numer. Simul. 139 108320
[45] Yu J, Li C, Zhang X M, Liu Q, Liu M 2025 Sci. China Inf. Sci. 55 749 [余杰,李超,张续猛,刘琦,刘明 2025 中国科学:信息科学 55 749]
[46] Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin.73 207302 [贡以纯,明建宇,吴思齐,仪明东,解令海,黄维,凌海峰 2024 物理学报73 207302]
[47] Ma D, Jin X F, Sun S C, Li Y T, Wu X D, Hu Y N, Yang F C, Tang H J, Zhu X L, Lin P, Pan G 2024 Natl. Sci. Rev. 11 nwae102
[48] Sun B, Guo C B, Cui C Q, Zhang G H 2021 Microelectron. Reliab. 121 114123
[49] Hernandez-Balaguera E, Vara H, Polo J L 2018 J. Electrochem. Soc. 165 G3099
[50] Kim D, Kwon K, Kim Hea, Jin S, Yang H, Kim J, Park J 2019 ECS Meet. Abstr. MA2019-01 1169
[51] Lee J, Cha M, Kwon M 2023 Appl. Sci. 13 2628
[52] Joop M K, Azghadi M R, Behbahani F, Al-Shidaifat A, Song H J 2023 IEEE Access 11 133451
[53] Zhou P J, Zuo Y, Qiao G C, Zhang C M, Zhang Z, Meng L W, Yu Q, Liu Y, Hu G S 2023 IEEE Trans. Biomed. Circuits Syst.17 1319
[54] Yang F F, Song X L, Ma J 2024 Chin. J. Phys. 91 287
Metrics
- Abstract views: 25
- PDF Downloads: 0
- Cited By: 0









下载: