-
High impedance surface, due to its unique property of in-phase reflection at some frequency, could be used in designing multiband Salisbury screen by replacing the metallic ground plane in a traditional structure, which is proposed, in this paper, to enhance the microwave absorbing performance of the conventional Salisbury screen. First, electromagnetic wave field intensity of different frequency in space after being reflected by a high impedance surface is analyzed, which implies that new absorption bands can be introduced at about the frequencies of in-phase reflection by sharing Salisbury screen’s resistive sheet, without adding extra lossy materials such as lumped elements or others. Then, by taking a single band high impedance surface at 6.25 GHz and a dual-band high impedance surface at 6.27 and 8.17 GHz, which are both composed of patches array with varying periodic size and a thickness of 0.6 mm, the multiband Salisbury screens can be constructed utilizing a conventional one with an absorbing peak at about 10.5 GHz. The reflectivity of these multiband absorbers are simulated by employing the commercial CST microwave studio and later measured using a reflectivity measurement system comprising two polarized horns and a vector network analyzer. Experimental results agree well with the simulations, and all results verify that the method presented at the beginning is effective. Results also show that new additional absorptions appear at the frequencies where microwaves are nearly reflected in phase from the high impedance surface, with the same number of the in-phase reflection bands. Meanwhile, the original microwave absorbing capability of the traditional Salisbury screen is reserved mostly. Compared to the single band high impedance surface, the dual-band high impedance surface performs better in the design as the absorbing bandwidth is wider and the absorbing frequency is lower. With an additional thickness of the high impedance surface (no more than 1 mm), the total absorption bandwidth of the multiband Salisbury screen with a reflection below -10 dB increases from 8.5 to 10.1 GHz, and the lowest frequency with 10 dB absorption falls from 7.5 to 5.98 GHz. So it could be concluded that the design of multiband Salisbury screen is helpful to widen the absorption, especially towards the lower frequency direction.
-
Keywords:
- high impedance surface /
- artificial magnetic conductor /
- Salisbury screen /
- microwave absorber
[1] Sievenpiper D 1999 Ph. D. Dissertation ( UCLA)
[2] Monorchio A, Manara G, Lanuzza L 2002 IEEE Antenn. Wirel. Pr. 01 196
[3] Clavijo S, Díaz R E, McKinzie W E 2003 IEEE T. Antenn. Propag. 51 2678
[4] Kretly L C, Silva A M P A 2003 International Microwave and Optoelectronics Conference Parana, Brazil Sept. 20-23, 2003 p219
[5] Ren L H, Luo J R, Zhang C 2011 Acta Phys. Sin. 60 088401 (in Chinese) [任丽红, 罗积润, 张弛 2011 物理学报 60 088401]
[6] Tan Y, Yuan N, Yang Y, Fu Y 2011 Electron. Lett. 47 582
[7] Vallecchi A, De Luis J R, Capolino F, De Flaviis F 2012 IEEE T. Antenn. Propag. 60 51
[8] Almutawa A T, Mumcu G 2013 IET Microw. Antenna. P. 07 1137
[9] Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]
[10] Iriarte Galarregui J C, Tellechea Pereda A, Martinez De Falcon J L, Ederra I, Gonzalo R, de Maagt P 2013 IEEE T. Antenn. Propag. 61 6136
[11] Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801
[12] Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M, Chen H Y, Liang D F, Deng L J 2013 J. Appl. Phys. 113 013903
[13] Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2013 Acta Phys. Sin. 62 134102 (in Chinese) [程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2013 物理学报 62 134102]
[14] Seman F C, Cahill R, Fusco V F, Goussetis G 2011 IET Microw. Antenna. P. 05 149
[15] Seman F C, Cahill R, Fusco V 2010 Proceedings of the Fourth European Conference on Antennas and Propagation Barcelona, Spain, April 12-16, 2010 p1
[16] Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Techn. Let. 53 712
-
[1] Sievenpiper D 1999 Ph. D. Dissertation ( UCLA)
[2] Monorchio A, Manara G, Lanuzza L 2002 IEEE Antenn. Wirel. Pr. 01 196
[3] Clavijo S, Díaz R E, McKinzie W E 2003 IEEE T. Antenn. Propag. 51 2678
[4] Kretly L C, Silva A M P A 2003 International Microwave and Optoelectronics Conference Parana, Brazil Sept. 20-23, 2003 p219
[5] Ren L H, Luo J R, Zhang C 2011 Acta Phys. Sin. 60 088401 (in Chinese) [任丽红, 罗积润, 张弛 2011 物理学报 60 088401]
[6] Tan Y, Yuan N, Yang Y, Fu Y 2011 Electron. Lett. 47 582
[7] Vallecchi A, De Luis J R, Capolino F, De Flaviis F 2012 IEEE T. Antenn. Propag. 60 51
[8] Almutawa A T, Mumcu G 2013 IET Microw. Antenna. P. 07 1137
[9] Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]
[10] Iriarte Galarregui J C, Tellechea Pereda A, Martinez De Falcon J L, Ederra I, Gonzalo R, de Maagt P 2013 IEEE T. Antenn. Propag. 61 6136
[11] Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801
[12] Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M, Chen H Y, Liang D F, Deng L J 2013 J. Appl. Phys. 113 013903
[13] Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2013 Acta Phys. Sin. 62 134102 (in Chinese) [程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2013 物理学报 62 134102]
[14] Seman F C, Cahill R, Fusco V F, Goussetis G 2011 IET Microw. Antenna. P. 05 149
[15] Seman F C, Cahill R, Fusco V 2010 Proceedings of the Fourth European Conference on Antennas and Propagation Barcelona, Spain, April 12-16, 2010 p1
[16] Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Techn. Let. 53 712
Catalog
Metrics
- Abstract views: 7191
- PDF Downloads: 580
- Cited By: 0