-
Electromagnetically induced transparency (EIT) effect is an effective means to store light field into the atom ensemble. The extra noise introduced in the stored procedure can be suppressed greatly under the condition of large one-photon detuning and proper two-photon detuning. In this paper, we experimentally investigate the slow light and light storage in 87Rb vapor by using EIT effect, and study the effects of the two-photon detuning on light pulse delay and light memory at 650 MHz one-photon red detuning. In order to avoid some unwanted effects under the high optical depth condition, such as four-wave mixing, etc., the temperature of the atomic cell is controlled at 65 degrees Celsius. The experimental results show that the delay and the retrieval signals are significant in a two-photon detuning range from 0 to 0.5 MHz. The pulse delay decreases with the increase of two-photon detuning. The delay is 0.36 ups at two-photon resonance, and it is 0.07 ups at 1 MHz two-photon detuning. We simulate the delayed light pulse by using a three-level -type EIT model. The shapes of the measured slow light are in agreement with the theoretical results. The retrieval signals are observed at different two-photon detunings. The shapes of the retrieval pulses change with the two-photon detuning. The shape variations of the retrieval pulses cannot be explained by the three-level EIT theoretical model. By considering the atomic Zeeman sublevels interacting with the left-circular and right-circular polarized components of probe and coupling fields, multiple -type EIT systems will be formed. The interference between the retrieval signals from multiple EIT subsystems causes the shape distortions of retrieval pulses. The retrieval efficiency is measured as a function of two-photon detuning. The retrieval efficiency oscillates, and multiple peaks appear with the increase of two-photon detuning. The first peak appears at two-photon resonance, and the second peak appears at 0.48 MHz two-photon detuning. Finally, we measure the retrieval efficiency as a function of the coupling power at 0.48 MHz two-photon detuning. The optimal retrieval efficiency reaches 25% when the coupling power is 100 mW. These results provide experimental reference for the quantum memory of continuous variables in the hot atom ensemble.
-
Keywords:
- electromagnetically induced transparency /
- slow light /
- light storage /
- two-photon detuning
[1] Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094
[2] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
[3] Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490
[4] Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783
[5] Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev. A 78 021802(R)
[6] Gorshkov A V, Andr A, Lukin M D, Srensen A S 2007 Phys. Rev. A 76 033805
[7] Bian C L, Zhu J, Lu J W, Yan J L, Chen L Q, Wang Z B, Ou Z Y, Zhang W P 2013 Acta Phys. Sin. 62 174207 (in Chinese) [边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平 2013 物理学报 62 174207]
[8] Hsu M T L, Htet G, Glckl O, Longdell J J, Buchler B C, Bachor H A, Lam P K 2006 Phys. Rev. Lett. 97 183601
[9] Htet G, Peng A, Johnsson M T, Hope J J, Lam P K 2008 Phys. Rev. A 77 012323
[10] Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601
[11] Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[12] Figueroa E, Lobino M, Korystov D, Appel J, Lvovsky A I 2009 New J. Phys. 11 013044
[13] L C H, Tan L, Tan W T 2011 Acta Phys. Sin. 60 024204 (in Chinese) [吕纯海, 谭磊, 谭文婷 2011 物理学报 60 024204]
[14] Phillips N B, Gorshkov A V, Novikova I 2011 Phys. Rev. A 83 063823
[15] Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K, Walmsley I A 2011 Phys. Rev. Lett. 107 053603
[16] Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136 (in Chinese) [王波, 李淑静, 常宏, 武海斌, 谢常德, 王海 2005 物理学报 54 4136]
[17] Meng X D, Tian L, Zhang Z Y, Yan Z H, Li S J, Wang H 2012 Acta Sin. Quan. Opt. 18 357 (in Chinese) [孟祥栋, 田龙, 张志英, 闫智辉, 李淑静, 王海 2012 量子光学学报 18 357]
[18] Zhao X B, Xu Z X, Zhang L J, Wu Y L, Li S J, Wang H 2010 Acta Sin. Quan. Opt. 16 196 (in Chinese) [赵兴波, 徐忠孝, 张利军, 武跃龙, 李淑静, 王海 2010 量子光学学报 16 196]
[19] Gea-Banacloche J, Li Y Q, Jin S Z, Xiao M 1995 Phys. Rev. A 51 576
[20] Chen Y F, Kao Y M, Lin W H, Yu I A 2006 Phys. Rev. A 74 063807
[21] Li S J, Zhao X B, Xu Z X, Wu Y L, Liu H L, Zheng H Y, Zhang L, Wang H 2010 Acta Sin. Quan. Opt. 16 189 (in Chinese) [李淑静, 赵兴波, 徐忠孝, 武跃龙, 刘海龙, 郑海燕, 张玲, 王海 2010 量子光学学报 16 189]
[22] Mewes C, Fleischhauer M 2002 Phys. Rev. A 66 033820
-
[1] Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094
[2] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
[3] Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490
[4] Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783
[5] Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev. A 78 021802(R)
[6] Gorshkov A V, Andr A, Lukin M D, Srensen A S 2007 Phys. Rev. A 76 033805
[7] Bian C L, Zhu J, Lu J W, Yan J L, Chen L Q, Wang Z B, Ou Z Y, Zhang W P 2013 Acta Phys. Sin. 62 174207 (in Chinese) [边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平 2013 物理学报 62 174207]
[8] Hsu M T L, Htet G, Glckl O, Longdell J J, Buchler B C, Bachor H A, Lam P K 2006 Phys. Rev. Lett. 97 183601
[9] Htet G, Peng A, Johnsson M T, Hope J J, Lam P K 2008 Phys. Rev. A 77 012323
[10] Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601
[11] Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[12] Figueroa E, Lobino M, Korystov D, Appel J, Lvovsky A I 2009 New J. Phys. 11 013044
[13] L C H, Tan L, Tan W T 2011 Acta Phys. Sin. 60 024204 (in Chinese) [吕纯海, 谭磊, 谭文婷 2011 物理学报 60 024204]
[14] Phillips N B, Gorshkov A V, Novikova I 2011 Phys. Rev. A 83 063823
[15] Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K, Walmsley I A 2011 Phys. Rev. Lett. 107 053603
[16] Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136 (in Chinese) [王波, 李淑静, 常宏, 武海斌, 谢常德, 王海 2005 物理学报 54 4136]
[17] Meng X D, Tian L, Zhang Z Y, Yan Z H, Li S J, Wang H 2012 Acta Sin. Quan. Opt. 18 357 (in Chinese) [孟祥栋, 田龙, 张志英, 闫智辉, 李淑静, 王海 2012 量子光学学报 18 357]
[18] Zhao X B, Xu Z X, Zhang L J, Wu Y L, Li S J, Wang H 2010 Acta Sin. Quan. Opt. 16 196 (in Chinese) [赵兴波, 徐忠孝, 张利军, 武跃龙, 李淑静, 王海 2010 量子光学学报 16 196]
[19] Gea-Banacloche J, Li Y Q, Jin S Z, Xiao M 1995 Phys. Rev. A 51 576
[20] Chen Y F, Kao Y M, Lin W H, Yu I A 2006 Phys. Rev. A 74 063807
[21] Li S J, Zhao X B, Xu Z X, Wu Y L, Liu H L, Zheng H Y, Zhang L, Wang H 2010 Acta Sin. Quan. Opt. 16 189 (in Chinese) [李淑静, 赵兴波, 徐忠孝, 武跃龙, 刘海龙, 郑海燕, 张玲, 王海 2010 量子光学学报 16 189]
[22] Mewes C, Fleischhauer M 2002 Phys. Rev. A 66 033820
Catalog
Metrics
- Abstract views: 7547
- PDF Downloads: 241
- Cited By: 0