Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on hysteresis characteristics of magnetic domain rotation in Tb0.3Dy0.7Fe2 alloy

Yan Bai-Ping Zhang Cheng-Ming Li Li-Yi Lü Fu-Zai Deng Shuang

Citation:

Study on hysteresis characteristics of magnetic domain rotation in Tb0.3Dy0.7Fe2 alloy

Yan Bai-Ping, Zhang Cheng-Ming, Li Li-Yi, Lü Fu-Zai, Deng Shuang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the rotation effects of magnetic domain with different pre-compressive stress and basic magnetic field in the Tb0.3Dy0.7Fe2 alloy have been studied, the curves of magnetization induced by the rotation of magnetic domains are calculated, and the hysteresis characteristics of magnetization in the process of piezomagnetic and magnetoelastic effects are summarized. Based on the minimal value principle of three-dimensional Stoner-Wolhfarth (S-W) model, the total free energy of magnetostrictive particles (including magneto-crystal line anisotropy energy, stress-induced anisotropy energy, and magnetic field energy) is calculated, the curve of free energy is plotted as a function of domain rotation angle for various compressive stresses and magnetic fields. Then, the values of rotation angle for the magnetic domains in the eight easy axial directions 111 are given, and the summation values of magnetization induced by the rotations of magnetic domain angle are analyzed, the hysteresis characteristics and the hysteresis loops of magnetic domain rotations are calculated and discussed. All the above results indicate that the rotations of magnetic domains in the TbDyFe alloy have hysteresis and transition effects in its piezomagnetic and magnetoelastic processes, and the hysteresis effect of magnetization is always induced by the irreversible transitions of domain angle rotation. Due to the load of magnetic field and compressive stress, the angle of the eight easy axial domains 111 will rotate to the more suitable free energy directions, the reversible and irreversible transitions of domain rotation appear in this rotation, and irreversible transition will induce a larger value of changes in the magnetization existing as a hysteresis loop. Also, In the piezomagnetic effect, magnetization hysteresis loop appears with the load of basic magnetic field, and the increase of magnetic field will help to enhance its hysteresis loop and lead to the hysteresis curve deflected toward the greater compressive stress direction. Thirdly, the hysteresis effects of magnetic domain rotation have two important critical magnetic fields in the magnetoelastic process: the magnetostrictive materials will have different domain rotation paths and hysteresis curve in different basic magnetic fields, and the value of critical field will be influenced by the load of pre-compressive stress. Lastly, the experimental testing is used to verify the model and calculations, and the test results of magnetic remanence are in good agreement with the calculated results, especially in the larger values of pre-compressive stress loads. The above computations have a significance for perfecting magnetic domain deflection model and the results are helpful for designing and analyzing of magnetosrictive materials in application.
      Corresponding author: Yan Bai-Ping, d_enip@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51407157, 51307027).
    [1]

    Eason G, Noble B, Sneddon I N 2000 Sensors and Actuators 81 275

    [2]

    Bottauscio O, Roccato P E, Zucca M 2010 IEEE Trans. Magn. 46 3022

    [3]

    Zucca M, Roccato P E, Bottauscio O, Beatrice C 2010 IEEE Trans. Magn. 46 183

    [4]

    Grunwald A, Olabi A G 2008 Sensors and Actuators A 144 161

    [5]

    Karunanidhi S, Singaperumal M 2010 Sensors and Actuators A 157 185

    [6]

    Davino D, Giustiniani A, Visone C 2010 IEEE Trans. Magn. 46 646

    [7]

    Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (New Jersey: Wiley) p258

    [8]

    Zheng L, Jiang C B, Shang J X, Xu H B 2009 Chin. Phys. B 18 1647

    [9]

    Wang Z B, Liu J H, Jiang C B 2010 Chin. Phys. B 19 117504

    [10]

    Clark A E, Yoo J H, Cullen J R, Fogle M W, Petculescu G, Flatau A 2009 J. Appl. Phys. 105 07A913

    [11]

    Yan J C, Xie X Q, Yang S Q, He S Y 2001 J. Magn. Magn. Mater. 223 27

    [12]

    Mei W, Umeda T, Zhou S, Wang R 1997 J. Alloys Compd. 248 151

    [13]

    Liu J H, Wang Z B, Jiang C B, Xu H B 2010 J. Appl. Phys. 108 033913

    [14]

    Chen Y H, Jiles D C 2001 IEEE Trans. Magn. 37 3069

    [15]

    Clark A E, Savege H T, Spano M L 1984 IEEE Trans. Magn. 20 1443

    [16]

    Jiles D C, Thoelke J B 1994 J. Magn. Mater. 134 143

    [17]

    Zhang H, Zeng D C 2010 Atca Phys. Sin. 59 2808 (in Chinese) [张辉, 曾德长 2010 物理学报 59 2808]

    [18]

    Zhang H, Zeng D C, Liu Z W 2011 Atca Phys. Sin. 60 067503 (in Chinese) [张辉, 曾德长, 刘仲武 2011 物理学报 60 067503]

    [19]

    Zhang H, Zeng D C 2010 J. Appl. Phys. 107 123918

    [20]

    Li L Y, Yan B P, Zhang C M, Cao J W 2012 Atca Phys. Sin. 61 167506 (in Chinese) [李立毅, 严柏平, 张成明, 曹继伟 2012 物理学报 61 167506]

    [21]

    Stoner E C, Wohifarth E P 1948 Philos. Trans. Roy. Soc. London. A 240 599

    [22]

    Mei W, Okane T, Umeda T 1998 J. Appl. Phys. 84 6208

    [23]

    Armstrong W D 2002 J. Inter. Mater. Syst. Struct. 13 137

    [24]

    Armstrong W D 1997 J. Appl. Phys. 81 3548

    [25]

    Zhao X G, Lord D G 1998 J. Appl. Phys. 83 7276

    [26]

    Zhang H 2011 Appl. Phys. Lett. 98 232505

  • [1]

    Eason G, Noble B, Sneddon I N 2000 Sensors and Actuators 81 275

    [2]

    Bottauscio O, Roccato P E, Zucca M 2010 IEEE Trans. Magn. 46 3022

    [3]

    Zucca M, Roccato P E, Bottauscio O, Beatrice C 2010 IEEE Trans. Magn. 46 183

    [4]

    Grunwald A, Olabi A G 2008 Sensors and Actuators A 144 161

    [5]

    Karunanidhi S, Singaperumal M 2010 Sensors and Actuators A 157 185

    [6]

    Davino D, Giustiniani A, Visone C 2010 IEEE Trans. Magn. 46 646

    [7]

    Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (New Jersey: Wiley) p258

    [8]

    Zheng L, Jiang C B, Shang J X, Xu H B 2009 Chin. Phys. B 18 1647

    [9]

    Wang Z B, Liu J H, Jiang C B 2010 Chin. Phys. B 19 117504

    [10]

    Clark A E, Yoo J H, Cullen J R, Fogle M W, Petculescu G, Flatau A 2009 J. Appl. Phys. 105 07A913

    [11]

    Yan J C, Xie X Q, Yang S Q, He S Y 2001 J. Magn. Magn. Mater. 223 27

    [12]

    Mei W, Umeda T, Zhou S, Wang R 1997 J. Alloys Compd. 248 151

    [13]

    Liu J H, Wang Z B, Jiang C B, Xu H B 2010 J. Appl. Phys. 108 033913

    [14]

    Chen Y H, Jiles D C 2001 IEEE Trans. Magn. 37 3069

    [15]

    Clark A E, Savege H T, Spano M L 1984 IEEE Trans. Magn. 20 1443

    [16]

    Jiles D C, Thoelke J B 1994 J. Magn. Mater. 134 143

    [17]

    Zhang H, Zeng D C 2010 Atca Phys. Sin. 59 2808 (in Chinese) [张辉, 曾德长 2010 物理学报 59 2808]

    [18]

    Zhang H, Zeng D C, Liu Z W 2011 Atca Phys. Sin. 60 067503 (in Chinese) [张辉, 曾德长, 刘仲武 2011 物理学报 60 067503]

    [19]

    Zhang H, Zeng D C 2010 J. Appl. Phys. 107 123918

    [20]

    Li L Y, Yan B P, Zhang C M, Cao J W 2012 Atca Phys. Sin. 61 167506 (in Chinese) [李立毅, 严柏平, 张成明, 曹继伟 2012 物理学报 61 167506]

    [21]

    Stoner E C, Wohifarth E P 1948 Philos. Trans. Roy. Soc. London. A 240 599

    [22]

    Mei W, Okane T, Umeda T 1998 J. Appl. Phys. 84 6208

    [23]

    Armstrong W D 2002 J. Inter. Mater. Syst. Struct. 13 137

    [24]

    Armstrong W D 1997 J. Appl. Phys. 81 3548

    [25]

    Zhao X G, Lord D G 1998 J. Appl. Phys. 83 7276

    [26]

    Zhang H 2011 Appl. Phys. Lett. 98 232505

  • [1] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on the m = 1 helicon mode power deposition characteristic. Acta Physica Sinica, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on wave mode propagation and power deposition characteristics in helicon plasma. Acta Physica Sinica, 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [3] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [4] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [5] Ouyang Hao, Hu Si-Yang, Shen Man-Ling, Zhang Chen-Xi, Cheng Xiang-Ai, Jiang Tian. Polarization-dependent nonlinear optical response in GeSe2. Acta Physica Sinica, 2020, 69(18): 184212. doi: 10.7498/aps.69.20200443
    [6] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [7] Yan Bai-Ping, Zhang Cheng-Ming, Li Li-Yi, Tang Zhi-Feng, Lü Fu-Zai, Yang Ke-Ji. Method of identifying consitutive parameter in Tb0.3Dy0.7Fe2 Alloy. Acta Physica Sinica, 2015, 64(2): 027501. doi: 10.7498/aps.64.027501
    [8] Zhang Yong-Wei, Yin Chun-Hao, Zhao Qiang, Li Fu-Qiang, Zhu Shan-Shan, Liu Hai-Shun. Theoretical research of correlation of electronic structure with birefringence and anisotropy of TiO2. Acta Physica Sinica, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [9] Wan Jin, Tian Yu, Zhou Ming, Zhang Xiang-Jun, Meng Yong-Gang. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Physica Sinica, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [10] Li Li-Yi, Yan Bai-Ping, Zhang Cheng-Ming, Cao Ji-Wei. Study on magnetic domain deflection in Tb0.3Dy0.7Fe2 alloy. Acta Physica Sinica, 2012, 61(16): 167506. doi: 10.7498/aps.61.167506
    [11] Liu Yong, Zhou Rui, Li Jing, Zhang Yue, Xiong Rui, Yin Di, Tang Wu-Feng, Shi Jing. Single crystal growth and magnetic properties of spinel structure and spin ordering compound CaTi2O4. Acta Physica Sinica, 2010, 59(8): 5620-5625. doi: 10.7498/aps.59.5620
    [12] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [13] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [14] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [15] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Yang Guo-Hui. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial. Acta Physica Sinica, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [16] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [17] Shi Li-Bin, Ren Jun-Yuan, Zhang Feng-Yun, Zhang Guo-Hua, Yu Zeng-Qiang. A study on resistive transition and anisotropy of MgB2/Al2O3 superconducting thin films. Acta Physica Sinica, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [18] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [19] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. An auxiliary differential equation FDTD method for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [20] Li An-Hua, Dong Sheng-Zhi, Li Wei. . Acta Physica Sinica, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
Metrics
  • Abstract views:  5979
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2015
  • Accepted Date:  04 January 2016
  • Published Online:  05 March 2016

/

返回文章
返回