Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on mechanism of carbon transformation in the preparation of polycrystalline diamond by melt infiltration and growth method under high pressures

Hu Qiang Jia Xiao-Peng Li Shang-Sheng Su Tai-Chao Hu Mei-Hua Fang Chao Zhang Yue-Wen Li Gang Liu Hai-Qiang Ma Hong-An

Citation:

Research on mechanism of carbon transformation in the preparation of polycrystalline diamond by melt infiltration and growth method under high pressures

Hu Qiang, Jia Xiao-Peng, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Fang Chao, Zhang Yue-Wen, Li Gang, Liu Hai-Qiang, Ma Hong-An
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, a variety of carbon materials can be turned into pure polycrystalline diamond directly without any additives under extreme high pressures and high temperatures (pressure above 13 GPa and temperature above 2000 ℃). Polycrystalline diamond shows a broad application prospect because of its superior performance. However, it is difficult to realize the industrialization of pure polycrystalline diamond on current high pressure equipment due to the high synthetic conditions. The focus of our work is that the synthesis of pure polycrystalline diamond can be realized in the same synthesis range of single diamond produced from the solvent metal (pressure below 6 GPa and temperature below 1500 ℃). The carbon materials can precipitate from the solution in a form of diamond, and fill into the gaps between the diamond particles. According to some domestic scholars' researches on polycrystalline diamond, the solvent method can reduce the high temperature and high pressure conditions on which carbon may transform into diamond directly, and precipitate from the solution in the form of diamond into the gaps between diamond particles. Through a deep study of the approach, the low addition content, even pure polycrystalline diamond without gaps can be prepared. In this paper we have prepared pure polycrystalline diamonds under relatively lower conditions (the pressure being below 6 GPa and the temperature below 1500 ℃) by the method that the metal solution layer infiltrates into the gaps between the pure diamond particles and then the diamond particles will grow up. We also carry out a research on the mechanism of carbon transformation in the preparation of polycrystalline diamond. Compared with the traditional method of powder mixing technology, the melt infiltration and growth method is more advantageous to prepare high abrasive resistance and high density pure polycrystalline diamond.In order to prepare pure flawless polycrystalline diamonds without additives by China-type large volume cubic high-pressure apparatus (CHPA) (SPD-61200), we study thoroughly on the melt infiltration and growth method under high pressures; and this provides a theoretical guidance for pure polycrystalline diamond synthesis. In this paper, polycrystalline diamond is prepared by melt infiltration and growth method at pressures below 6 GPa and temperatures below 1500 ℃. Mechanism research of carbon transformation is made under high pressure and high temperature (HPHT). Through the analyses of optical microscope, X-ray diffraction, and field emission scanning electron microscope measurements, graphitization occurs on the surface of diamond in the procedure of metal solution infiltrating, and then the generated graphite quickly change into diamond-like carbon under HPHT. Meanwhile, the morphology of diamond particles changes distinctly in the syntheses process. From the analysis of experimental phenomena, carbon may undergo three transformations in the preparation: 1) graphite is generated due to the graphitization on the surface of diamond particles, which is caused by the metal solution infiltrating; 2) the generated graphite quickly fills into the gap with the form of diamond-like carbon during the sintering stage; 3) the diamond-like carbon is dissolved in a metal solution, and then precipitates between particles in the form of diamond. The mechanism research on carbon source transformation plays an important guiding role in the industrialization of no-additive, no-gap pure polycrystalline diamond preparation.
      Corresponding author: Ma Hong-An, maha@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51172089).
    [1]

    Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474

    [2]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [3]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250

    [4]

    Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 Appl. Mater. Interfaces 5 7439

    [5]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [6]

    Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I, Lee S T 2003 Appl. Phys. Lett. 82 2622

    [7]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781

    [8]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [9]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 物理学报 64 128101]

    [10]

    Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta. Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]

    [11]

    Fang L g, Qin G P, Kong C Y, Ruan H B, Huang G J, Cui Y T 2010 Chin. Phys. B 19 117501

    [12]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

    [13]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [14]

    Irifune T, Kurio A, Sakamoto S, Inour T, Sumiya H, Funakoshi K 2004 Phys. Ear. Plan. Inter. 143-144 593

    [15]

    Xu C, He D w, Wang H K, Wang W D, Tang M J, Wang P 2014 Chin. Sci. Bull. 59 5251

    [16]

    Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Regract. Met. H. 36 232

    [17]

    Sumiya H, Irifune T 2004 Diam. Relat. Mater. 14 1771

    [18]

    Dubrobinskata N, Dubrovinsky L, Langenhorst F, Jacobsen S, Liebske C 2005 Diam. Relat. Mater. 14 16

    [19]

    Yusa H 2002 Diam. Relat. Mater. 11 87

    [20]

    Sumiya H, Harano K 2012 Diam. Relat. Mater. 24 44

    [21]

    Harano K, Saton T, Sumiya H, Kukino S 2012 Diam. Relat. Mater. 24 78

    [22]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104

    [23]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [24]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [25]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [26]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [27]

    Deng F M, Wang Q, Lu S D, Zhao D, Zhao X K 2013 Superhard Mater. Eng. 25 49

    [28]

    Hong S M, Luo X J, Chen S X, Jiang R Z, Gou Q Q 1990 Chin. J. High Pressure Phys. 4 105

    [29]

    Hong S M 2005 Superhard Mate. Eng. 1 1

    [30]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Zhang G, Philip B J 2002 Phys.: Condens. Matter. 14 11269

    [31]

    Shao H L, Wang H K, Xu S K, Chen Y J, LI Y, Peng J, Zou W J 2015 Mater. Rev. 29 81

    [32]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

  • [1]

    Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474

    [2]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [3]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250

    [4]

    Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 Appl. Mater. Interfaces 5 7439

    [5]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [6]

    Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I, Lee S T 2003 Appl. Phys. Lett. 82 2622

    [7]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781

    [8]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [9]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 物理学报 64 128101]

    [10]

    Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta. Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]

    [11]

    Fang L g, Qin G P, Kong C Y, Ruan H B, Huang G J, Cui Y T 2010 Chin. Phys. B 19 117501

    [12]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

    [13]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [14]

    Irifune T, Kurio A, Sakamoto S, Inour T, Sumiya H, Funakoshi K 2004 Phys. Ear. Plan. Inter. 143-144 593

    [15]

    Xu C, He D w, Wang H K, Wang W D, Tang M J, Wang P 2014 Chin. Sci. Bull. 59 5251

    [16]

    Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Regract. Met. H. 36 232

    [17]

    Sumiya H, Irifune T 2004 Diam. Relat. Mater. 14 1771

    [18]

    Dubrobinskata N, Dubrovinsky L, Langenhorst F, Jacobsen S, Liebske C 2005 Diam. Relat. Mater. 14 16

    [19]

    Yusa H 2002 Diam. Relat. Mater. 11 87

    [20]

    Sumiya H, Harano K 2012 Diam. Relat. Mater. 24 44

    [21]

    Harano K, Saton T, Sumiya H, Kukino S 2012 Diam. Relat. Mater. 24 78

    [22]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104

    [23]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [24]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [25]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [26]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [27]

    Deng F M, Wang Q, Lu S D, Zhao D, Zhao X K 2013 Superhard Mater. Eng. 25 49

    [28]

    Hong S M, Luo X J, Chen S X, Jiang R Z, Gou Q Q 1990 Chin. J. High Pressure Phys. 4 105

    [29]

    Hong S M 2005 Superhard Mate. Eng. 1 1

    [30]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Zhang G, Philip B J 2002 Phys.: Condens. Matter. 14 11269

    [31]

    Shao H L, Wang H K, Xu S K, Chen Y J, LI Y, Peng J, Zou W J 2015 Mater. Rev. 29 81

    [32]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

  • [1] Ma Meng-Yu, Yu Cui, He Ze-Zhao, Guo Jian-Chao, Liu Qing-Bin, Feng Zhi-Hong. Growth and surface structrue of hydrogen terminal diamond thin films. Acta Physica Sinica, 2024, 73(8): 088101. doi: 10.7498/aps.73.20240053
    [2] Xiao Hong-Yu, Li Yong, Bao Zhi-Gang, She Yan-Chao, Wang Ying, Li Shang-Sheng. Effect of catalyst composition on growth and crack defects of large diamond single crystal under high temperature and pressure. Acta Physica Sinica, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation. Acta Physica Sinica, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [4] Wang Jun-Zhuo, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wu Yu-Min, Wang Jian-Kang, Han Fei, Yu Kun-Peng, Gao Guang-Jin, Guo Ming-Ming, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu. Shape controlled growth for type Ib large diamond crystals. Acta Physica Sinica, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [5] Song Qing, Quan Wei-Long, Feng Tian-Jun, E Yan. Collision reactions of CH radical on diamond and their effects on the carbon film growth. Acta Physica Sinica, 2016, 65(3): 030701. doi: 10.7498/aps.65.030701
    [6] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [7] Guo Li-Ping, Yang Wan-Min, Guo Yu-Xia, Chen Li-Ping, Li Qiang. Effect of Ni2O3 doping on the properties of single domain GdBCO bulk superconductors fabricated by a new modified top-seeding infiltration and growth process. Acta Physica Sinica, 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [8] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [9] Zhu Li, Jiang Mei-Fu, Ning Zhao-Yuan, Du Ji-Long, Wang Pei-Jun. Hydrophobic nature of fluorinated diamond-like carbon films prepared under different radio-frequency power. Acta Physica Sinica, 2009, 58(9): 6430-6435. doi: 10.7498/aps.58.6430
    [10] Hu Jian-Gang, Wang Zhen-Xia, Yong Zhen-Zhong, Li Qin-Tao, Zhu Zhi-Yuan. Phase transition from amorphous carbon to diamond nanocrystalline induced by 40Ar+. Acta Physica Sinica, 2006, 55(12): 6538-6542. doi: 10.7498/aps.55.6538
    [11] Ye Fan, Xie Er-Qing, Li Rui-Shan, Lin Hong-Feng, Zhang Jun, He De-Yan. Field emission properties of diamond-like carbon and carbon nitride films deposited by the electrochemical method. Acta Physica Sinica, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
    [12] Gao Peng, Xu Jun, Deng Xin-Lu, Wang De-He, Dong Chuang. Structure and tribology properties of diamond-like carbon films prepared by microwave electron cyclotron resonance plasma source ion implantation. Acta Physica Sinica, 2005, 54(7): 3241-3246. doi: 10.7498/aps.54.3241
    [13] Fang Zhi-Jun, Xia Yi-Ben, Wang Lin-Jun, Zhang Wei-Li, Ma Zhe-Guo, Zhang Ming-Long. Study of the stress observed in diamond films on carbon-implanted alumina surfaces. Acta Physica Sinica, 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
    [14] ZHANG WEI, WANG JI-TAO, WAN YONG-ZHONG. PHASE DIAGRAM CALCULATION OF DIAMONDGROWTH FROM LOW PRESSURE GASES. Acta Physica Sinica, 1997, 46(6): 1237-1242. doi: 10.7498/aps.46.1237
    [15] ZHANG WEN-JUN, HAN LI, HU BO, ZHANG FANG-QING, CHEN GUANG-HUA. NUCLEATION AND GROWTH PROCESS OF TEXTURED DIAMOND FILMS. Acta Physica Sinica, 1996, 45(1): 88-93. doi: 10.7498/aps.45.88
    [16] WANG TIAN-MIN, WANG WEI-JIE, HAN PEI-GANG, HUANG LIANG-FU, LUO CHONG-TAI. PRIMARY STUDY ON THE IRRADIATION EFFECT OF HYDROGEN IONS ON DIAMOND-LIKE CARBON FILMS. Acta Physica Sinica, 1992, 41(2): 276-281. doi: 10.7498/aps.41.276
    [17] GAO LIAN. STRUCTURE TRANSFORMATION IN DIAMOND SYNTHESIS. Acta Physica Sinica, 1982, 31(8): 1085-1089. doi: 10.7498/aps.31.1085
    [18] HU JING-ZHU, TANG RU-MING, XU JI-AN. THE HIGH PRESSURE DEVICE OF DIAMOND ANVIL AND THE OBSERVATION OF PHASE TRANSITION OF IODINE AND SULPHUR. Acta Physica Sinica, 1980, 29(10): 1351-1354. doi: 10.7498/aps.29.1351
    [19] CHENG YUE-YING, CHEN JING-ZHANG, CHEN LIANG-CHEN. THE DIFFUSION AND DISTRIBUTION OF CATALYST METAL NICKEL IN POLYCRYSTAL DIAMOND GROWN UNDER ULTRA HIGH PRESSURE. Acta Physica Sinica, 1980, 29(11): 1507-1512. doi: 10.7498/aps.29.1507
    [20] SHEN ZHU-TONG, WANG LI-JUN, YANG YI-JUAN, NIE JIAN-JUN, LIU YU-MING, ZHANG JUN. THE MECHANISM OF SINTERING POLYCRYSTAL DIAMOND UNDER HIGH PRESSURE——THE INTERACTION BETWEEN THE BINARY INCLUSIONS AND DIAMOND. Acta Physica Sinica, 1978, 27(3): 344-348. doi: 10.7498/aps.27.344
Metrics
  • Abstract views:  6079
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  14 November 2015
  • Accepted Date:  18 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回