Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flow property of fiber suspension in a turbulent channel flow under considering both Brownian and turbulent diffusions

Xia Yi Ku Xiao-Ke Shen Su-Hua

Citation:

Flow property of fiber suspension in a turbulent channel flow under considering both Brownian and turbulent diffusions

Xia Yi, Ku Xiao-Ke, Shen Su-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The issue of fiber suspension flow has received great substantial attention in the last decades. In contrast with the abundant researches of normal size fiber suspensions flow, this paper is devoted to the small size fiber suspension composed of water and polyarmide fiber where Brownian motion plays an important role and thus cannot be neglected. The spatial distribution and orientation of fiber, streamwise mean velocity profile, turbulent kinetic energy, Reynolds stress and rheological property of fiber suspension in a turbulent channel flow are obtained and analyzed both numerically and experimentally. To simulate the small fiber suspension flow well, the well-known Reynolds averaged Navier-Stokes (N-S) equation governing the suspension flow is modified in consideration of the effect of fibers on base flow. The equation describing the probability density functions for fiber orientation is derived in view of the rotary Brownian diffusion. The general dynamic equation for fibers is reshaped in the effect of spatial Brownian diffusion. For the sake of the closure of the N-S equation, the turbulence kinetic energy and turbulence dissipation rate equations with fiber term are employed. The conditional finite difference method is adopted to discrete these partial differential equations. And the diffusion term and convective term are discretized by the central finite differences and the second-order upwind finite difference schemes, respectively. The second and fourth-order orientation tensors are integrated by the Simpson formula. Experiment is also performed to validate some numerical results. The results show that most fibers tend to align parallelly to the flow direction in the flow, especially in regions near the wall. Such a phenomenon is more obvious with the decreases of Reynolds number and fiber concentration, and with the increase of fiber aspect ratio. Fiber volume fraction distribution is non-uniform across the channel, and becomes more uniform with increasing Reynolds number, and with reducing fiber aspect ratio. The changes of fiber orientation distribution and spatial distribution are not sensitive to fiber aspect ratio for 5. Streamwise mean velocity profile in fiber suspension has a steeper slope than that in single phase flow, and the steepness increases as the fiber concentration and fiber aspect ratio increase, and as the Reynolds number decreases. The presence of fiber will reduce the turbulence kinetic energy and Reynolds stress. The effect of fiber on the turbulence suppression becomes more obvious with the increases of fiber concentration and aspect ratio, and with the decrease of Reynolds number. The first normal stress difference is less than 0.05 and much less than the shear stress. From the wall to the center of the channel, the shear stress increases while the first normal stress difference decreases. Both the shear stress and the first normal stress difference increase with increasing fiber concentration and aspect ratio. Shear stress increases while the first normal stress difference decreases with increasing Reynolds number. The effects of fiber concentration on the shear stress and the first normal stress difference are larger than the fiber aspect ratio.
      Corresponding author: Xia Yi, dynamic_xia@zju.edu.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 11132008).
    [1]

    Zhang H F, Ahmadi G, Fan F G, McLaughlin J B 2001 Int. J. Multiphas. Flow 27 971

    [2]

    Lin J Z, Shi X, You Z J 2003 J. Aerosol Sci. 34 909

    [3]

    Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphas. Flow 29 1355

    [4]

    Lin J Z, Zhang W F, Yu Z S 2004 J. Aerosol Sci. 35 63

    [5]

    Lin J Z, Zhang L X, Zhang W F 2006 J. Colloid Interf. Sci. 296 721

    [6]

    Lin J Z, Gao Z Y, Zhou K, Chan T L 2006 Appl. Math. Model. 30 1010

    [7]

    Manhart M, Friedrich R 2004 Direct and Large-eddy Simulation V (Dordrecht: Springer Netherlands) p287

    [8]

    Manhart M 2003 J. Non-Newton. Fluid. 112 269

    [9]

    Manhart M 2004 Eur. J. Mech. B: Fluid. 23 461

    [10]

    Gillissen J J J, Boersma B J, Nieuwstadt F T M, Lamballais E, Friedrich R, Geurts B J, Metais O 2006 Direct and Large-eddy Simulation VI (Dordrecht: Springer Netherlands) p303

    [11]

    Moosaie A, Manhart M 2013 Acta Mech. 224 2385

    [12]

    Moosaie A 2013 J. Disper. Sci. Technol. 34 870

    [13]

    Batchelor G K 1971 J. Fluid Mech. 46 813

    [14]

    Mackaplow M B, Shaqfeh E S G 1996 J. Fluid Mech. 329 155

    [15]

    Advani S G, Tucker C L 1987 J. Rheol. 31 751

    [16]

    Cintra J S, Tucker C L 1995 J. Rheol. 39 1095

    [17]

    Koch D L 1995 Phys. Fluids 7 2086

    [18]

    Folgar F, Tucker C L Ⅲ 1984 J. Reinf. Plast. Comp. 3 98

    [19]

    Olson J A 2001 Int. J. Multiphas. Flow 27 2083

    [20]

    Li G, Tang J X 2004 Phys. Rev. E 69 061921

    [21]

    De La Torre J G, Bloomfield V A 1981 Q. Rev. Biophys. 14 81

    [22]

    Lin J Z, Shen S H 2010 Sci. China: Phys. Mech. Astron. 53 1659

    [23]

    Friedlander S K 2000 Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (New York, Oxford: Oxford University Press) p59

    [24]

    Chen H S, Ding Y L, Lapkin A, Fan X L 2009 J. Nanopart. Res. 11 1513

    [25]

    Chen H S, Ding Y L, Lapkin A 2009 Powder Technol. 194 132

    [26]

    Yu L, Liu D, Botz F 2012 Exp. Therm. Fluid Sci. 37 72

    [27]

    Bernstein O, Shapiro M 1994 J. Aerosol Sci. 25 113

    [28]

    Cox R G 1971 J. Fluid Mech. 45 625

  • [1]

    Zhang H F, Ahmadi G, Fan F G, McLaughlin J B 2001 Int. J. Multiphas. Flow 27 971

    [2]

    Lin J Z, Shi X, You Z J 2003 J. Aerosol Sci. 34 909

    [3]

    Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphas. Flow 29 1355

    [4]

    Lin J Z, Zhang W F, Yu Z S 2004 J. Aerosol Sci. 35 63

    [5]

    Lin J Z, Zhang L X, Zhang W F 2006 J. Colloid Interf. Sci. 296 721

    [6]

    Lin J Z, Gao Z Y, Zhou K, Chan T L 2006 Appl. Math. Model. 30 1010

    [7]

    Manhart M, Friedrich R 2004 Direct and Large-eddy Simulation V (Dordrecht: Springer Netherlands) p287

    [8]

    Manhart M 2003 J. Non-Newton. Fluid. 112 269

    [9]

    Manhart M 2004 Eur. J. Mech. B: Fluid. 23 461

    [10]

    Gillissen J J J, Boersma B J, Nieuwstadt F T M, Lamballais E, Friedrich R, Geurts B J, Metais O 2006 Direct and Large-eddy Simulation VI (Dordrecht: Springer Netherlands) p303

    [11]

    Moosaie A, Manhart M 2013 Acta Mech. 224 2385

    [12]

    Moosaie A 2013 J. Disper. Sci. Technol. 34 870

    [13]

    Batchelor G K 1971 J. Fluid Mech. 46 813

    [14]

    Mackaplow M B, Shaqfeh E S G 1996 J. Fluid Mech. 329 155

    [15]

    Advani S G, Tucker C L 1987 J. Rheol. 31 751

    [16]

    Cintra J S, Tucker C L 1995 J. Rheol. 39 1095

    [17]

    Koch D L 1995 Phys. Fluids 7 2086

    [18]

    Folgar F, Tucker C L Ⅲ 1984 J. Reinf. Plast. Comp. 3 98

    [19]

    Olson J A 2001 Int. J. Multiphas. Flow 27 2083

    [20]

    Li G, Tang J X 2004 Phys. Rev. E 69 061921

    [21]

    De La Torre J G, Bloomfield V A 1981 Q. Rev. Biophys. 14 81

    [22]

    Lin J Z, Shen S H 2010 Sci. China: Phys. Mech. Astron. 53 1659

    [23]

    Friedlander S K 2000 Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (New York, Oxford: Oxford University Press) p59

    [24]

    Chen H S, Ding Y L, Lapkin A, Fan X L 2009 J. Nanopart. Res. 11 1513

    [25]

    Chen H S, Ding Y L, Lapkin A 2009 Powder Technol. 194 132

    [26]

    Yu L, Liu D, Botz F 2012 Exp. Therm. Fluid Sci. 37 72

    [27]

    Bernstein O, Shapiro M 1994 J. Aerosol Sci. 25 113

    [28]

    Cox R G 1971 J. Fluid Mech. 45 625

  • [1] Peng Ying-Zha, Zhang Kai, Zheng Bai-Lin. Analytical analysis of concentration distribution and diffusion-induced stress of finite-length cylindrical electrode under galvanostatic operation. Acta Physica Sinica, 2024, 73(15): 158201. doi: 10.7498/aps.73.20231753
    [2] Miao Chun-He, Yuan Liang-Zhu, Lu Jian-Hua, Wang Peng-Fei, Xu Song-Lin. Deformation evolution and diffusion characteristics of polymethyl methacrylate under impact loading. Acta Physica Sinica, 2022, 71(21): 216201. doi: 10.7498/aps.71.20220740
    [3] Miao Chun-he,  Yuan Liangzhu,  Lu Jianhua,  WANG Pengfei,  XU Songlin. Study on deformation evolution and diffusion characteristics of PMMA under impact loading. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220740
    [4] Ma Ao-Jie, Chen Song-Jia, Li Yu-Xiu, Chen Ying. Molecular dynamics simulation of Brownian diffusion boundary condition for nanoparticles. Acta Physica Sinica, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [5] Wang Ren, Liu Sheng, Zhang Mo-Ran, Wang Bing-Zhong. Slowly spreading propagation characteristics of flying electromagnetic toroid. Acta Physica Sinica, 2020, 69(16): 164101. doi: 10.7498/aps.69.20200271
    [6] Zhang Peng, Hong Yan-Ji, Ding Xiao-Yu, Shen Shuang-Yan, Feng Xi-Ping. Effect of plasma on boron-based two-phase flow diffusion combustion. Acta Physica Sinica, 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [7] Meng Fan-Jing, Liu Kun. Velocity fluctuation and self diffusion character in a dense granular sheared flow studied by discrete element method. Acta Physica Sinica, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [8] Yang Wei-Guo, Zhong Cheng, Xia Hui. Study on diffusion of permeable particles in concentrated suspensions. Acta Physica Sinica, 2014, 63(21): 214705. doi: 10.7498/aps.63.214705
    [9] Zhong Cheng, Chen Zhi-Quan, Yang Wei-Guo, Xia Hui. Influence of electrolytes on diffusion properties of colloidal particles in dense suspensions. Acta Physica Sinica, 2013, 62(21): 214207. doi: 10.7498/aps.62.214207
    [10] Zhang Chuan-Yu, Gao Tao, Zhang Yun-Guang, Zhou Jing-Jing, Zhu Zheng-He, Chen Bo. Theoretical studies on the structure and He interstitial diffusion of LaNi5He compounds. Acta Physica Sinica, 2008, 57(7): 4379-4385. doi: 10.7498/aps.57.4379
    [11] Ma Jun, Jin Wu-Yin, Yi Ming, Li Yan-Long. Control of spiral wave and turbulence in the time-varied reaction-diffusion system. Acta Physica Sinica, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [12] Zhang Chao-Hui, Luo Jian-Bin, Wen Shi-Zhu. Effects of nano-scale particles in chemical mechanical polishing process. Acta Physica Sinica, 2005, 54(5): 2123-2127. doi: 10.7498/aps.54.2123
    [13] . Acta Physica Sinica, 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [14] CHEN HE-SHENG. THE QUANTUM TRANSPORT PROPERTIES OF A 1-DIMENSIONAL KICKED BILLIARDS MODEL. Acta Physica Sinica, 2000, 49(5): 844-848. doi: 10.7498/aps.49.844
    [15] LIU LI-WEI, WANG ZUO-WEI, ZHOU LU-WEI, WANG ZHI-JIN, GAO GUANG-JUN, LIU XIAO-JUN. SQUEEZE FLOW VISCOELASTICITY OF ELECTRORHEOLOGICAL FLUIDS BASED ON MICROCRYSTAL LINE CELLULOSE. Acta Physica Sinica, 2000, 49(9): 1886-1891. doi: 10.7498/aps.49.1886
    [16] WU FENG, WANG BING-HONG, YANG YUE-GUI, YAO BIN. RELATIONSHIP BETWEEN THE BROWNIAN MOTION OF THE SUSPENDED PARTICLES IN ERF AND THEIR AGGREGATION. Acta Physica Sinica, 1996, 45(3): 403-408. doi: 10.7498/aps.45.403
    [17] LI HONG-CHENG, D. G. HINKS. THE SUPERCONDUCTING PROPERTIES OF PbMo6S8 TAPES PREPARED BY REACTION DIFFUSION METHOD. Acta Physica Sinica, 1984, 33(7): 1062-1064. doi: 10.7498/aps.33.1062
    [18] QIU XIAO-MING. RENORMALIZED QUASI LINEAR THEORY OF TURBULENCE IN NON UNIFORM PLASMA (Ⅱ)——RESONANT DIFFUSION IN A TURBULENT PLASMA. Acta Physica Sinica, 1980, 29(9): 1104-1109. doi: 10.7498/aps.29.1104
    [19] MA Dα-YOU, LI PEI-ZI, DAI GEN-HUA, WANG HONG-YU. THE OUTFLOW OF AIR FROM POROUS MATERIALS AND THE NOISE REDUCTION THEORY OF POROUS DIFFUSER. Acta Physica Sinica, 1978, 27(6): 631-644. doi: 10.7498/aps.27.631
    [20] . Acta Physica Sinica, 1960, 16(2): 113-116. doi: 10.7498/aps.16.113
Metrics
  • Abstract views:  5305
  • PDF Downloads:  152
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2016
  • Accepted Date:  12 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回