Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry

Wang Yi-Ming Hu Chen-Chen Liu Quan Guo Hui-Yong Yin Guang-Lin Li Zheng-Ying

Citation:

High speed demodulation method of identical weak fiber Bragg gratings based on wavelength-sweep optical time-domain reflectometry

Wang Yi-Ming, Hu Chen-Chen, Liu Quan, Guo Hui-Yong, Yin Guang-Lin, Li Zheng-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The identical weak reflection Fiber Bragg gratings (FBGs) with large capacity has become one of the central issues of optical fiber sensing field in the engineering application.Currently,wavelength division multiplexing (WDM) and time division multiplexing (TDM) are two major multiplexing techniques.For a WDM system,the maximum number of FBGs is limited by the spectral bandwidth of laser.So the identical weak FBGs are proposed to break through the limitation of the multiplexing capacity.For large-capacity multiplexing of identical weak FBGs,TDM technique is commonly used.In a TDM system,the spectral information of all FBGs can be obtained by some pulsed light with different wavelengths.However,with increasing the number of identical weak FBGs in TDM system,some problems such as complex demodulation process and slow response time are highlighted in the current various demodulation methods. Thus in this paper we propose a new high-speed demodulation method combined with wavelength-sweep optical timedomain reflectometry (WSOTDR) which is different from the pulsed light in optical time domain reflectometry (OTDR), namely a continuous wavelength-sweep light source is used in WSOTDR.In this method,the reflected signals of identical weak FBG at each position will be distinguished from others in time domain through optical delay effect,hence the location information of each FBG could be acquired,and meanwhile the wavelength information of all the identical weak FBGs could be obtained through high-frequency periodical wavelength-swept spectrum in just one wavelength scanning period.In order to calibrate the error of FBG demodulation which is caused by optical delay at high-speed wavelength sweep,we propose a self-calibration method in which two different wavelength-sweep rates are used to obtain the inherent delay parameters of each FBG.In practical application,we use this self-calibration method in the initial stage of demodulation because the inherent delay parameters are usually stable after the layout of an identical weak FBGs network.So the demodulating speed at the working stage of this system is not affected by this self-calibration method. In this paper,by setting up a Fourier domain mode locking laser as an output of continuous wavelength-sweep and highspeed (3.27×106 and 2.72×106 nm/s) light,an identical weak FBG sensing network which consists of 18 FBGs is tested in three experiments.In the initial calibration experiment,we use the self-calibration method to calibrate the inherent delay parameters of each FBG and to verify the accuracy of the system by comparing with the measurement result of spectrum analyzer.In the temperature experiment,the wavelength of each FBG is demodulated from 30 to 100 ℃ in order to test the demodulation linearity of the system.Then in the vibration experiment,a dynamic measurement of 3.6 kHz vibration of FBG is demonstrated with a demodulating speed as fast as 120 kHz,and a 0-60 kHz frequency spectrum is analyzed to prove the speed.The experimental results show that the demodulation error is less than 15 pm, the resolution is 1pm,the linearity is above 0.998,and the demodulating speed reaches 120 kHz.
      Corresponding author: Li Zheng-Ying, zhyli@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575149, 61290311) and the International Science Technology Cooperation Program of China (Grant No. 2015DFA70340).
    [1]

    Wang L, Li D S, Ou J P 2011 Adv. Mater. Res. 148 1611

    [2]

    Jiang D S, He W 2002 J. Opt. Laser 13 420(in Chinese)[姜德生, 何伟2002光电子·激光13 420]

    [3]

    Wang F F, Zhang L, Yang L Z, Liu Y Y 2014 Acta Opt. Sin. 34 88(in Chinese)[王斐斐, 张丽, 杨玲珍, 刘艳阳2014光学学报34 88]

    [4]

    Zhou Q, Ning T G, Pei L, Li J, Li C, Zhang C 2012 Opt. Lett. 8 414

    [5]

    Jiang H, Chen J, Liu T, Huang W 2013 Sensor. Actuat. A:Phys. 198 31

    [6]

    Chen D, Fok M P, Shu C, He S 2008 Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science Canada, May 4-9, 2008 p1

    [7]

    Lee B C, Jung E J, Kim C S, Jeon M Y 2010 Meas. Sci. Technol. 21 094008

    [8]

    Chen D, Shu C, He S 2008 Opt. Lett. 33 1395

    [9]

    Yu H H, Zheng Y, Guo H Y, Jiang D S 2014 J. Funct. Mater. 12 12001(in Chinese)[余海湖, 郑羽, 郭会勇, 姜德生2014功能材料12 12001]

    [10]

    Dai Y, Liu Y, Leng J, Deng G, Asundi A 2009 Opt. Lasers Eng. 47 1028

    [11]

    Li Z Y, Sun W F, Li Z M, Wang H H 2015 Acta Phys. Sin. 64 234207 (in Chinese)[李政颖, 孙文丰, 李子墨, 王洪海2015物理学报64 234207]

    [12]

    Zhang C X, Zhang Z W, Zheng W F, Liu X H, Li Y, Dong X Y 2014 Chin. J. Lasers 41 0405004(in Chinese)[张彩霞, 张震伟, 郑万福, 刘晓航, 李裔, 董新永2014中国激光41 0405004]

    [13]

    Chan C C, Wei J, Ho H L, Demokan M S 2000 IEEE J. Sel. Top. Quant 6 741

    [14]

    Zhang M L, Sun Q Z, Wang Z, Li X L, Liu H R, Liu D M 2011 Laser & Optoelectronics Progress 8 93(in Chinese)[张满亮, 孙琪真, 王梓, 李晓磊, 刘海荣, 刘德明2011激光与光电子学进展8 93]

    [15]

    Hu C W, Wen H Q, Bai W 2014 J. Lightwave Technol. 32 1406

    [16]

    Wang Y, Liu W, Fu J, Chen D 2009 Laser Phys. 19 450

    [17]

    Li Z Y, Liu M Y, Wang Y M, Liu Q, Gong J M 2014 IEEE Photon. Technol. Lett. 26 2090

    [18]

    Yin G L, Dai Y T, Karanja J M, Dai J X 2015 Sensor. Actuat. A:Phys. 235 311

  • [1]

    Wang L, Li D S, Ou J P 2011 Adv. Mater. Res. 148 1611

    [2]

    Jiang D S, He W 2002 J. Opt. Laser 13 420(in Chinese)[姜德生, 何伟2002光电子·激光13 420]

    [3]

    Wang F F, Zhang L, Yang L Z, Liu Y Y 2014 Acta Opt. Sin. 34 88(in Chinese)[王斐斐, 张丽, 杨玲珍, 刘艳阳2014光学学报34 88]

    [4]

    Zhou Q, Ning T G, Pei L, Li J, Li C, Zhang C 2012 Opt. Lett. 8 414

    [5]

    Jiang H, Chen J, Liu T, Huang W 2013 Sensor. Actuat. A:Phys. 198 31

    [6]

    Chen D, Fok M P, Shu C, He S 2008 Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science Canada, May 4-9, 2008 p1

    [7]

    Lee B C, Jung E J, Kim C S, Jeon M Y 2010 Meas. Sci. Technol. 21 094008

    [8]

    Chen D, Shu C, He S 2008 Opt. Lett. 33 1395

    [9]

    Yu H H, Zheng Y, Guo H Y, Jiang D S 2014 J. Funct. Mater. 12 12001(in Chinese)[余海湖, 郑羽, 郭会勇, 姜德生2014功能材料12 12001]

    [10]

    Dai Y, Liu Y, Leng J, Deng G, Asundi A 2009 Opt. Lasers Eng. 47 1028

    [11]

    Li Z Y, Sun W F, Li Z M, Wang H H 2015 Acta Phys. Sin. 64 234207 (in Chinese)[李政颖, 孙文丰, 李子墨, 王洪海2015物理学报64 234207]

    [12]

    Zhang C X, Zhang Z W, Zheng W F, Liu X H, Li Y, Dong X Y 2014 Chin. J. Lasers 41 0405004(in Chinese)[张彩霞, 张震伟, 郑万福, 刘晓航, 李裔, 董新永2014中国激光41 0405004]

    [13]

    Chan C C, Wei J, Ho H L, Demokan M S 2000 IEEE J. Sel. Top. Quant 6 741

    [14]

    Zhang M L, Sun Q Z, Wang Z, Li X L, Liu H R, Liu D M 2011 Laser & Optoelectronics Progress 8 93(in Chinese)[张满亮, 孙琪真, 王梓, 李晓磊, 刘海荣, 刘德明2011激光与光电子学进展8 93]

    [15]

    Hu C W, Wen H Q, Bai W 2014 J. Lightwave Technol. 32 1406

    [16]

    Wang Y, Liu W, Fu J, Chen D 2009 Laser Phys. 19 450

    [17]

    Li Z Y, Liu M Y, Wang Y M, Liu Q, Gong J M 2014 IEEE Photon. Technol. Lett. 26 2090

    [18]

    Yin G L, Dai Y T, Karanja J M, Dai J X 2015 Sensor. Actuat. A:Phys. 235 311

  • [1] Li Ke, Dong Ming-Li, Yuan Pei, Lu Li-Dan, Sun Guang-Kai, Zhu Lian-Qing. Review of fiber Bragg grating interrogation techniques based on array waveguide gratings. Acta Physica Sinica, 2022, 71(9): 094207. doi: 10.7498/aps.71.20212063
    [2] Sun Miao, Yang Shuang, Tang Yu-Quan, Zhao Xiao-Hu, Zhang Zhi-Rong, Zhuang Fei-Yu. Distributed fiber optic temperature sensor based on dynamic calibration of Raman Stokes backscattering light intensity. Acta Physica Sinica, 2022, 71(20): 200701. doi: 10.7498/aps.71.20220611
    [3] Cao Yu-Zhen, Ma Jin-Ying, Liu Kun, Huang Xiang-Dong, Jiang Jun-Feng, Wang Tao, Xue Meng, Liu Tie-Gen. Optical fiber SPR sensing demodulation algorithm based on all-phase filters. Acta Physica Sinica, 2017, 66(7): 074202. doi: 10.7498/aps.66.074202
    [4] Fan Jin-Yu, Gao Feng, Kong Wen, Li Hai-Wen, Shi Guo-Hua. A full spectrum resamping method in polygon tunable laser-based swept-source optical coherence tomography. Acta Physica Sinica, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [5] Li Zheng-Ying, Zhou Lei, Sun Wen-Feng, Li Zi-Mo, Wang Jia-Qi, Guo Hui-Yong, Wang Hong-Hai. High speed and high precision demodulation method of fiber grating based on dispersion effect. Acta Physica Sinica, 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [6] Liu Rui-Xia, Zhang Ming-Jiang, Zhang Jian-Zhong, Liu Yi, Jin Bao-Quan, Bai Qing, Li Zhe-Zhe. Temperature measurement accuracy enhancement in the Brillouin optical time domain reflectometry system using the sideband of Brillouin gain spectrum demodulation. Acta Physica Sinica, 2016, 65(24): 244203. doi: 10.7498/aps.65.244203
    [7] Cui Li-Hong, Zhao Wei-Ning, Yan Chang-Xiang. Analysis and alignment of the light path of Gauss beam matched to the fundamental mode ofan optical resonator. Acta Physica Sinica, 2015, 64(22): 224211. doi: 10.7498/aps.64.224211
    [8] Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai. A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber. Acta Physica Sinica, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [9] Li Shen, Ma Hai-Qiang, Wu Ling-An, Zhai Guang-Jie. High-speed polarization controller for all-fiber quantum communication systems. Acta Physica Sinica, 2013, 62(8): 084214. doi: 10.7498/aps.62.084214
    [10] Wang Wen-Rui, Yu Jin-Long, Luo Jun, Han Bing-Chen, Wu Bo, Guo Jing-Zhong, Wang Ju, Yang En-Ze. High speed real-time optical sampling system based on optical parametric amplification. Acta Physica Sinica, 2011, 60(10): 104220. doi: 10.7498/aps.60.104220
    [11] Qiao Xue-Guang, Ding Feng, Jia Zhen-An, Fu Hai-Wei, Ying Xu-Dong, Zhou Rui, Song Juan. High-accuracy quasi-distributed optical fiber Bragg gratingseismic demodulation system. Acta Physica Sinica, 2011, 60(7): 074221. doi: 10.7498/aps.60.074221
    [12] Han Xiao-Yan, Geng Xin-Hua, Hou Guo-Fu, Zhang Xiao-Dan, Li Gui-Jun, Yuan Yu-Jie, Wei Chang-Chun, Sun Jian, Zhang De-Kun, Zhao Ying. An optical emission spectroscopy study on the high rate growth of microcrystalline silicon films. Acta Physica Sinica, 2009, 58(2): 1344-1347. doi: 10.7498/aps.58.1344
    [13] Zhang Jin-Long, Yu Chong-Xiu, Wang Kui-Ru, Zhao De-Xin, Lin Mei-Mei, Li Cheng. Fiber grating sensor demodulation method based on polarization interference. Acta Physica Sinica, 2009, 58(6): 3988-3995. doi: 10.7498/aps.58.3988
    [14] Tan Si-Ting, He Yi, Sheng Li-Yuan. Study of attractor based on tangent-delay for elliptic reflecting cavity. Acta Physica Sinica, 2008, 57(10): 6103-6111. doi: 10.7498/aps.57.6103
    [15] WANG BING-HONG, WANG LEI, HUI PAK-MING, HU BAMBI. THE GRADUAL ACCELERATING TRAFFIC FLOW GELLULAR AUTOMATON MODEL IN WHICH ONLY HIG H SPEED CAR CAN BE DELAYED. Acta Physica Sinica, 2000, 49(10): 1926-1932. doi: 10.7498/aps.49.1926
    [16] JIANG YAN, CUI YI-PING, PANG SHU-MING. TUNABLE FREQUENCY-SELECTIVE CONVERTER FOR HIGH-SPEED DWDM SYSTEMS. Acta Physica Sinica, 1999, 48(10): 1884-1890. doi: 10.7498/aps.48.1884
    [17] MENG YUE-DONG. EXACT SOLUTION OF THE FWM IN PLASMAS IN THE CASE OF REFLECTION GRATING. Acta Physica Sinica, 1996, 45(3): 420-427. doi: 10.7498/aps.45.420
    [18] WU YING, YANG XIAO-XUE. THEORY OF DEGENERATE AND NEARLY DEGENERATE FOUR-WAVE MIXING IN PLASMAS——IN THE CASE OF REFLECTION GRATING CONFIGURATION. Acta Physica Sinica, 1992, 41(2): 260-266. doi: 10.7498/aps.41.260
    [19] ZHANG ZHAO-YUAN, QU LIN-JIE, LIU CHENG-HUI, HUO CHONG-RU. SINGLE-DELAY MEASUREMENT OF ULTRASHORT LIGHT PULSES BY THIRD ORDER INTENSITY CORRELATION. Acta Physica Sinica, 1982, 31(2): 213-219. doi: 10.7498/aps.31.213
    [20] . Acta Physica Sinica, 1964, 20(8): 817-818. doi: 10.7498/aps.20.817
Metrics
  • Abstract views:  7127
  • PDF Downloads:  339
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2016
  • Accepted Date:  21 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回