-
In order to measure a weak alternating magnetic field, an optically-pumped Rb magnetometer based on pump-probe structure is investigated and demonstrated. The pumping light and probing light propagate along the z axis and x axis, respectively. A constant polarization magnetic field along the pumping light is applied, which not only stabilizes the polarization of Rb atoms but also tunes resonance frequency of Rb atoms. When a weak alternating magnetic field is applied perpendicularly to the constant magnetic field, the magnetic moment will tip off the z axis and rotate around the z axis. And then the polarization plane of probing light is modulated correspondingly. The x component of the magnetic moment can be obtained with a balanced detector. As a result, a signal proportional to weak alternating magnetic field can be obtained.In order to obtain the magnetic response of the magnetometer, we analyze the signal amplitude as a function of polarization magnetic field strength B0 and transverse relaxation time 2 with numerical simulation. The amplitude-frequency response of the magnetometer is determined mainly by two parameters, namely cutoff frequency c=1/2 and resonance frequency 0= B0, where is the gyromagnetic ratio of Rb atom. At low frequency, that is a0 and a 0c2, the magnetometer has a flat response, here a is the frequency of the weak alternating magnetic field. If 0c, the signal amplitude will be large for large 0 or small c. For a given c, the peak response appears at 0=c. In the vicinity of resonance frequency, if c0, a peak will appear and if c 0, no peak occurs. At high frequency, the amplitude will decrease with the increase of a.We verify the above analyses in experiment. A vapor cell with a short transverse relaxation time is used to obtain large frequency response bandwidth. Through optimizing the powers and frequencies of pumping laser and probing laser, high polarization and detection sensitivity of atomic spin can be obtained. Moreover, through choosing an appropriate polarization magnetic field, the magnetometer can be maximally sensitive to the magnetic field to be measured. The experimental results show that the magnetometer has a sensitivity of about m 0.2; pT/HzHz and bandwidth of about 3.5 kHz. It can be used to detect low field magnetic resonance and high frequency abnormal physical phenomena.
-
Keywords:
- optical magnetometer /
- optical pumping /
- bandwidth /
- sensitivity
[1] Guan Z N 2003 Geomagnetic Field and Magnetic Exploration (Beijing:Geological Publishing House) p257(in Chinese)[管志宁2003地磁场与磁力勘探(北京:地质出版社)第257页]
[2] Clem T R 1998 Naval Engineers J. 110 139
[3] Corsini E, Acosta V, Baddour N, Higbie J, Lester B, Licht P, Patton B, Prouty M, Budker D 2011 J. Appl. Phys. 109 074701
[4] Wyllie R, Kauer M, Wakai R T, Walker T G 2012 Opt. Lett. 37 2247
[5] Rodriguez E, George N, Lachaux J P, Martinerie J, Renault B, Varela F J 1999 Nature 397 430
[6] Bison G, Wynands R, Weis A 2003 Appl. Phys. B 76 325
[7] Xia H, Baranga A B, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104
[8] Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. 103 12668
[9] Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001
[10] Budker D, Romalis M 2007 Nat. Phys. 3 227
[11] Kimball D F J, Lacey I, Valdez J, Swiatlowski J, Rios C, Peregrina-Ramirez R, Montcrieffe C, Kremer J, Dudley J, Sanchez C 2013 Ann. Phys. 525 514
[12] Pustelny S, Kimball D F J, Pankow C, Ledbetter M P, Wlodarczyk P, Wcislo P, Pospelov M, Smith J, Read J, Gawlik W, Budker D 2013 Ann. Phys. 525 659
[13] Romalis M V, Griffith W C, Jacobs J P, Fortson E N 2001 Phys. Rev. Lett. 86 2505
[14] Youdin A N, Krause J D, Jagannathan K, Hunter L R, Lamoreaux S K 1996 Phys. Rev. Lett. 77 2170
[15] Berglund C J, Hunter L R, Krause Jr D, Prigge E O, Ronfeldt M S, Lamoreaux S K 1995 Phys. Rev. Lett. 75 1879
[16] Murthy S A, Krause J D, Li Z L, Hunter L R 1989 Phys. Rev. Lett. 63 965
[17] Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596
[18] Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801
[19] Li Q M, Zhang J H, Zeng X J, Huang Q, Sun W M 2013 Laser Optoelectronics Progress 50 072802(in Chinese)[李庆萌, 张军海, 曾宪金, 黄强, 孙伟民2013激光与光电子学进展50 072802]
[20] Liu Q, Zhuo Y N, Sun Y D, Fu T S 2014 Laser Optoelectronics Progress 51 042301(in Chinese)[刘强, 卓艳男, 孙宇丹, 付天舒2014激光与光电子学进展51 042301]
[21] Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877(in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010物理学报59 877]
[22] Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014物理学报63 110701]
[23] Shi R, Wang Y 2013 Chin. Phys. B 22 100703
[24] Ding Z, Yuan J, Wang Z, Yang K, Luo H 2015 Chin. Phys. B 24 083202
[25] Donley E A 2010 Sensors IEEE 143 17
[26] Kwon T M, Mark J G, Volk C H 1982 Phys. Rev. A 24 1894
[27] Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]
[28] Cohen-Tannoudji C 1973 Fundamental and Applied Laser Physics (Chichester:John Wiley) p791
[29] Feng Y S 1989 Principles of Magnetic Resonace (Beijing:Higher Education Press) p39
[30] Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503
[31] Fu J Q, Du P C, Zhou Q, Wang R Q 2016 Chin. Phys. B 25 010302
[32] Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501
-
[1] Guan Z N 2003 Geomagnetic Field and Magnetic Exploration (Beijing:Geological Publishing House) p257(in Chinese)[管志宁2003地磁场与磁力勘探(北京:地质出版社)第257页]
[2] Clem T R 1998 Naval Engineers J. 110 139
[3] Corsini E, Acosta V, Baddour N, Higbie J, Lester B, Licht P, Patton B, Prouty M, Budker D 2011 J. Appl. Phys. 109 074701
[4] Wyllie R, Kauer M, Wakai R T, Walker T G 2012 Opt. Lett. 37 2247
[5] Rodriguez E, George N, Lachaux J P, Martinerie J, Renault B, Varela F J 1999 Nature 397 430
[6] Bison G, Wynands R, Weis A 2003 Appl. Phys. B 76 325
[7] Xia H, Baranga A B, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104
[8] Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. 103 12668
[9] Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001
[10] Budker D, Romalis M 2007 Nat. Phys. 3 227
[11] Kimball D F J, Lacey I, Valdez J, Swiatlowski J, Rios C, Peregrina-Ramirez R, Montcrieffe C, Kremer J, Dudley J, Sanchez C 2013 Ann. Phys. 525 514
[12] Pustelny S, Kimball D F J, Pankow C, Ledbetter M P, Wlodarczyk P, Wcislo P, Pospelov M, Smith J, Read J, Gawlik W, Budker D 2013 Ann. Phys. 525 659
[13] Romalis M V, Griffith W C, Jacobs J P, Fortson E N 2001 Phys. Rev. Lett. 86 2505
[14] Youdin A N, Krause J D, Jagannathan K, Hunter L R, Lamoreaux S K 1996 Phys. Rev. Lett. 77 2170
[15] Berglund C J, Hunter L R, Krause Jr D, Prigge E O, Ronfeldt M S, Lamoreaux S K 1995 Phys. Rev. Lett. 75 1879
[16] Murthy S A, Krause J D, Li Z L, Hunter L R 1989 Phys. Rev. Lett. 63 965
[17] Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596
[18] Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801
[19] Li Q M, Zhang J H, Zeng X J, Huang Q, Sun W M 2013 Laser Optoelectronics Progress 50 072802(in Chinese)[李庆萌, 张军海, 曾宪金, 黄强, 孙伟民2013激光与光电子学进展50 072802]
[20] Liu Q, Zhuo Y N, Sun Y D, Fu T S 2014 Laser Optoelectronics Progress 51 042301(in Chinese)[刘强, 卓艳男, 孙宇丹, 付天舒2014激光与光电子学进展51 042301]
[21] Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877(in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010物理学报59 877]
[22] Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014物理学报63 110701]
[23] Shi R, Wang Y 2013 Chin. Phys. B 22 100703
[24] Ding Z, Yuan J, Wang Z, Yang K, Luo H 2015 Chin. Phys. B 24 083202
[25] Donley E A 2010 Sensors IEEE 143 17
[26] Kwon T M, Mark J G, Volk C H 1982 Phys. Rev. A 24 1894
[27] Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]
[28] Cohen-Tannoudji C 1973 Fundamental and Applied Laser Physics (Chichester:John Wiley) p791
[29] Feng Y S 1989 Principles of Magnetic Resonace (Beijing:Higher Education Press) p39
[30] Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503
[31] Fu J Q, Du P C, Zhou Q, Wang R Q 2016 Chin. Phys. B 25 010302
[32] Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501
Catalog
Metrics
- Abstract views: 7348
- PDF Downloads: 443
- Cited By: 0