Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation

Miao Pei-Xian Yang Shi-Yu Wang Jian-Xiang Lian Ji-Qing Tu Jian-Hui Yang Wei Cui Jing-Zhong

Citation:

Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation

Miao Pei-Xian, Yang Shi-Yu, Wang Jian-Xiang, Lian Ji-Qing, Tu Jian-Hui, Yang Wei, Cui Jing-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We report a rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. The rubidium vapor cell is placed in a five-layer magnetic shield with inner coils that can generate uniform magnetic fields along the direction of pump beam, and the cell is also placed in the center of a Helmholtz coil that can generate an oscillating magnetic field perpendicular to the direction of pump beam. The atoms are optically pumped by circularly polarized pump beam along a constant magnetic field in a period of time, then the pump beam is turned off and a /2 pulse of oscillating magnetic field for 87Rb atoms is applied. After the above process, the individual atomic magnetic moments become phase coherent, resulting in a transverse magnetization vector precessing at the Larmor frequency in the magnetic field. The linearly polarized probing beam is perpendicular to the direction of magnetic field, and can be seen as a superposition of the left and right circularly polarized light. Because of the different absorptions and dispersions of the left and right circularly polarized light by rubidium atoms, the polarization direction of probing beam rotates when probing beam passes through rubidium vapor cell. The rotation of the polarization is subsequently converted into an electric signal through a polarizing beam splitter. Finally, the decay signal related to the transverse magnetization vector is measured. The Larmor frequency proportional to magnetic field is obtained by the Fourier transform of the decay signal. The value of magnetic field is calculated from the formula:B=(2/) f, where and f are the gyromagnetic ratio and Larmor frequency, respectively. In order to measure the magnetic field in a wide range, the tracking lock mode is proposed and tested. The atomic magnetometer can track the magnetic field jump of 1000 nT or 10000 nT, indicating that the atomic magnetometer has strong locking ability and can be easily locked after start-up. The main performances in different magnetic fields are tested. The results show that the measurement range of the atomic magnetometer is from 100 nT to 100000 nT, the extreme sensitivity is 0.2 pT/Hz1/2, and the magnetic field resolution is 0.1 pT. The transverse relaxation times of the transverse magnetization vector in different magnetic fields are obtained, and the relaxation time decreases with the increase of the magnetic field. When the measurement range is from 5000 nT to 100000 nT, the magnetic field sampling rate of the atomic magnetometer can be adjusted in a range from 1 Hz to 1000 Hz. The atomic magnetometer in high sampling rate can measure weak alternating magnetic field at low frequency. This paper provides an important reference for developing the atomic magnetometer with large measurement range, high sensitivity and high sampling rate.
      Corresponding author: Miao Pei-Xian, miaopeixian@163.com
    [1]

    Xu S, Crawford C W, Rochester S, Yashchuk V, Budker D, Pines A 2008 Phys. Rev. A 78 013404

    [2]

    Maser D, Pandey S, Ring H, Ledbetter M P, Knappe S, Kitching J, Budker D 2011 Rev. Sci. Instrum. 82 086112

    [3]

    Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801

    [4]

    Meyer D, Larsen M 2014 Gyroscopy and Navigation 5 75

    [5]

    Clem T R 1998 Nav. Eng. J. 110 139

    [6]

    Savukov I M, Seltzer S J, Romalis M V 2005 Phys. Rev. Lett. 95 063004

    [7]

    Budker D, Romalis M V 2007 Nat. Phys. 3 227

    [8]

    Savukov I M, Romalis M V 2005 Phys. Rev. Lett. 94 123001

    [9]

    Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801

    [10]

    Liu G B, Sun X P, Gu S H, Feng J W, Zhou X 2012 Physics 41 803(in Chinese)[刘国宾, 孙献平, 顾思洪, 冯继文, 周欣2012物理41 803]

    [11]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801

    [12]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [13]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110

    [14]

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877 (in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010物理学报59 877]

    [15]

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014物理学报63 110701]

    [16]

    Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]

    [17]

    Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702(in Chinese)[汪之国, 罗晖, 樊振方, 谢元平2016物理学报65 210702]

    [18]

    Dong H B, Zhang C D 2010 Chin. J. Eng. Geophys. 7 460(in Chinese)[董浩斌, 张昌达2010工程地球物理学报7 460]

    [19]

    Wang Y Q, Wang Q J, Fu J S, Dong T Q 1986 The Theory of Frequency Standards (Beijing:Science Press) pp168-173(in Chinese)[王义遒, 王庆吉, 傅济时, 董太乾1986量子频标原理(北京:科学出版社)第168–173页]

    [20]

    Eklund E J 2008 Ph. D. Dissertation (USA:University of California Irvine)

  • [1]

    Xu S, Crawford C W, Rochester S, Yashchuk V, Budker D, Pines A 2008 Phys. Rev. A 78 013404

    [2]

    Maser D, Pandey S, Ring H, Ledbetter M P, Knappe S, Kitching J, Budker D 2011 Rev. Sci. Instrum. 82 086112

    [3]

    Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801

    [4]

    Meyer D, Larsen M 2014 Gyroscopy and Navigation 5 75

    [5]

    Clem T R 1998 Nav. Eng. J. 110 139

    [6]

    Savukov I M, Seltzer S J, Romalis M V 2005 Phys. Rev. Lett. 95 063004

    [7]

    Budker D, Romalis M V 2007 Nat. Phys. 3 227

    [8]

    Savukov I M, Romalis M V 2005 Phys. Rev. Lett. 94 123001

    [9]

    Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801

    [10]

    Liu G B, Sun X P, Gu S H, Feng J W, Zhou X 2012 Physics 41 803(in Chinese)[刘国宾, 孙献平, 顾思洪, 冯继文, 周欣2012物理41 803]

    [11]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801

    [12]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [13]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110

    [14]

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877 (in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010物理学报59 877]

    [15]

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014物理学报63 110701]

    [16]

    Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]

    [17]

    Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702(in Chinese)[汪之国, 罗晖, 樊振方, 谢元平2016物理学报65 210702]

    [18]

    Dong H B, Zhang C D 2010 Chin. J. Eng. Geophys. 7 460(in Chinese)[董浩斌, 张昌达2010工程地球物理学报7 460]

    [19]

    Wang Y Q, Wang Q J, Fu J S, Dong T Q 1986 The Theory of Frequency Standards (Beijing:Science Press) pp168-173(in Chinese)[王义遒, 王庆吉, 傅济时, 董太乾1986量子频标原理(北京:科学出版社)第168–173页]

    [20]

    Eklund E J 2008 Ph. D. Dissertation (USA:University of California Irvine)

  • [1] Kou Ke, Wang Cuo, Wang Xian, Lian Tian-Hong, Jiao Ming-Xing, Fan Yu-Zhen. Sensitivity enhancement in laser self-mixing nano-particle sizer with linear current tuning based frequency shifting method. Acta Physica Sinica, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] Miao Pei-Xian, Wang Tao, Shi Yan-Chao, Gao Cun-Xu, Cai Zhi-Wei, Chai Guo-Zhi, Chen Da-Yong, Wang Jian-Bo. Measurement of coercivity of soft magnetic materials in open magnetic circuit by pump-probe rubidium atomic magnetometer. Acta Physica Sinica, 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [3] Chen Da-Yong, Miao Pei-Xian, Shi Yan-Chao, Cui Jing-Zhong, Liu Zhi-Dong, Chen Jiang, Wang Kuan. Measurement of noise of current source by pump-probe atomic magnetometer. Acta Physica Sinica, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [4] Measurement of the Noise of Current Source by Pump-probe Atomic Magnetometer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211122
    [5] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun. Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure. Acta Physica Sinica, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [7] Wu Tong, Sun Shuai-Shuai, Wang Xu-Hui, Wang Ji-Ming, He Chong-Jun, Gu Xiao-Rong, Liu You-Wen. Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system. Acta Physica Sinica, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [8] Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun. High sensitivity quantum Michelson interferometer. Acta Physica Sinica, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [9] Hu Ze-Hua, Ye Tao, Liu Xiong-Guo, Wang Jia. Uncertainty quantification in the calculation of keff using sensitity and stochastic sampling method. Acta Physica Sinica, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [10] Wang Zhi-Guo, Luo Hui, Fan Zhen-Fang, Xie Yuan-Ping. Research on an pump-probe rubidium magnetometer. Acta Physica Sinica, 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [11] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [12] Wang Jun-Ping, Qi Su-Yang, Liu Shi-Gang. Net sensitivity for open and short model based on layout optimization. Acta Physica Sinica, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [13] Jiang Ying, Liang Da-Kai, Zeng Jie, Ni Xiao-Yu. Influence of monitoring point wavelength on axial strain sensitivity of high-birefringence fiber loop mirror. Acta Physica Sinica, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [14] Tian Hui-Juan, Niu Ping-Juan. Sensitivity of delta-P1 approximation model to the reduced scattering parameter. Acta Physica Sinica, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [15] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Zhou Hai-Jin, Wu Feng-Cheng, Wang Yang, Liu Jian-Guo, Liu Wen-Qing. The sensitivity study of NO2 vertical profile retrieval by airborne platform. Acta Physica Sinica, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [16] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] Li Shu-Guang, Zhou Xiang, Cao Xiao-Chao, Sheng Ji-Teng, Xu Yun-Fei, Wang Zhao-Ying, Lin Qiang. All-optical high sensitive atomic magnetometer. Acta Physica Sinica, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [19] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [20] Liu Ying, Wang Li-Jun, Guo Yun-Feng, Zhang Xiao-Juan, Gao Zong-Hui, Tian Hui-Juan. Sensitivity of spatially-resolved diffuse reflectance to high-order optical parameters. Acta Physica Sinica, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
Metrics
  • Abstract views:  8119
  • PDF Downloads:  583
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2017
  • Accepted Date:  25 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回