-
We report a rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. The rubidium vapor cell is placed in a five-layer magnetic shield with inner coils that can generate uniform magnetic fields along the direction of pump beam, and the cell is also placed in the center of a Helmholtz coil that can generate an oscillating magnetic field perpendicular to the direction of pump beam. The atoms are optically pumped by circularly polarized pump beam along a constant magnetic field in a period of time, then the pump beam is turned off and a /2 pulse of oscillating magnetic field for 87Rb atoms is applied. After the above process, the individual atomic magnetic moments become phase coherent, resulting in a transverse magnetization vector precessing at the Larmor frequency in the magnetic field. The linearly polarized probing beam is perpendicular to the direction of magnetic field, and can be seen as a superposition of the left and right circularly polarized light. Because of the different absorptions and dispersions of the left and right circularly polarized light by rubidium atoms, the polarization direction of probing beam rotates when probing beam passes through rubidium vapor cell. The rotation of the polarization is subsequently converted into an electric signal through a polarizing beam splitter. Finally, the decay signal related to the transverse magnetization vector is measured. The Larmor frequency proportional to magnetic field is obtained by the Fourier transform of the decay signal. The value of magnetic field is calculated from the formula:B=(2/) f, where and f are the gyromagnetic ratio and Larmor frequency, respectively. In order to measure the magnetic field in a wide range, the tracking lock mode is proposed and tested. The atomic magnetometer can track the magnetic field jump of 1000 nT or 10000 nT, indicating that the atomic magnetometer has strong locking ability and can be easily locked after start-up. The main performances in different magnetic fields are tested. The results show that the measurement range of the atomic magnetometer is from 100 nT to 100000 nT, the extreme sensitivity is 0.2 pT/Hz1/2, and the magnetic field resolution is 0.1 pT. The transverse relaxation times of the transverse magnetization vector in different magnetic fields are obtained, and the relaxation time decreases with the increase of the magnetic field. When the measurement range is from 5000 nT to 100000 nT, the magnetic field sampling rate of the atomic magnetometer can be adjusted in a range from 1 Hz to 1000 Hz. The atomic magnetometer in high sampling rate can measure weak alternating magnetic field at low frequency. This paper provides an important reference for developing the atomic magnetometer with large measurement range, high sensitivity and high sampling rate.
-
Keywords:
- atomic magnetometer /
- nonlinear magneto-optical rotation /
- sensitivity /
- magnetic field sampling rate
[1] Xu S, Crawford C W, Rochester S, Yashchuk V, Budker D, Pines A 2008 Phys. Rev. A 78 013404
[2] Maser D, Pandey S, Ring H, Ledbetter M P, Knappe S, Kitching J, Budker D 2011 Rev. Sci. Instrum. 82 086112
[3] Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801
[4] Meyer D, Larsen M 2014 Gyroscopy and Navigation 5 75
[5] Clem T R 1998 Nav. Eng. J. 110 139
[6] Savukov I M, Seltzer S J, Romalis M V 2005 Phys. Rev. Lett. 95 063004
[7] Budker D, Romalis M V 2007 Nat. Phys. 3 227
[8] Savukov I M, Romalis M V 2005 Phys. Rev. Lett. 94 123001
[9] Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801
[10] Liu G B, Sun X P, Gu S H, Feng J W, Zhou X 2012 Physics 41 803(in Chinese)[刘国宾, 孙献平, 顾思洪, 冯继文, 周欣2012物理41 803]
[11] Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801
[12] Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596
[13] Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110
[14] Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877 (in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010物理学报59 877]
[15] Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014物理学报63 110701]
[16] Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]
[17] Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702(in Chinese)[汪之国, 罗晖, 樊振方, 谢元平2016物理学报65 210702]
[18] Dong H B, Zhang C D 2010 Chin. J. Eng. Geophys. 7 460(in Chinese)[董浩斌, 张昌达2010工程地球物理学报7 460]
[19] Wang Y Q, Wang Q J, Fu J S, Dong T Q 1986 The Theory of Frequency Standards (Beijing:Science Press) pp168-173(in Chinese)[王义遒, 王庆吉, 傅济时, 董太乾1986量子频标原理(北京:科学出版社)第168–173页]
[20] Eklund E J 2008 Ph. D. Dissertation (USA:University of California Irvine)
-
[1] Xu S, Crawford C W, Rochester S, Yashchuk V, Budker D, Pines A 2008 Phys. Rev. A 78 013404
[2] Maser D, Pandey S, Ring H, Ledbetter M P, Knappe S, Kitching J, Budker D 2011 Rev. Sci. Instrum. 82 086112
[3] Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801
[4] Meyer D, Larsen M 2014 Gyroscopy and Navigation 5 75
[5] Clem T R 1998 Nav. Eng. J. 110 139
[6] Savukov I M, Seltzer S J, Romalis M V 2005 Phys. Rev. Lett. 95 063004
[7] Budker D, Romalis M V 2007 Nat. Phys. 3 227
[8] Savukov I M, Romalis M V 2005 Phys. Rev. Lett. 94 123001
[9] Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801
[10] Liu G B, Sun X P, Gu S H, Feng J W, Zhou X 2012 Physics 41 803(in Chinese)[刘国宾, 孙献平, 顾思洪, 冯继文, 周欣2012物理41 803]
[11] Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801
[12] Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596
[13] Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110
[14] Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877 (in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010物理学报59 877]
[15] Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014物理学报63 110701]
[16] Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]
[17] Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702(in Chinese)[汪之国, 罗晖, 樊振方, 谢元平2016物理学报65 210702]
[18] Dong H B, Zhang C D 2010 Chin. J. Eng. Geophys. 7 460(in Chinese)[董浩斌, 张昌达2010工程地球物理学报7 460]
[19] Wang Y Q, Wang Q J, Fu J S, Dong T Q 1986 The Theory of Frequency Standards (Beijing:Science Press) pp168-173(in Chinese)[王义遒, 王庆吉, 傅济时, 董太乾1986量子频标原理(北京:科学出版社)第168–173页]
[20] Eklund E J 2008 Ph. D. Dissertation (USA:University of California Irvine)
Catalog
Metrics
- Abstract views: 8119
- PDF Downloads: 583
- Cited By: 0