Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-dipole effects in the angular distributions of photoelectrons on sodium-like ions

Ma Kun Xie Lu-You Zhang Deng-Hong Jiang Jun Dong Chen-Zhong

Citation:

Non-dipole effects in the angular distributions of photoelectrons on sodium-like ions

Ma Kun, Xie Lu-You, Zhang Deng-Hong, Jiang Jun, Dong Chen-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Photoionization processes widely exist in the astrophysical plasma and the high temperature laboratory plasma. Compared with the traditional photoelectron energy spectrum, the photoelectron angular distribution is not only related to the amplitude of the photoionization channels, but also sensitive to the phases of these channels. So the photoelectron angular distribution contains much more quantum information about the photoionization processes and is used to provide stringent tests of our understanding of basic physical processes underlying gas- and condensed-phase interaction with radiation, as well as a tool to probe physical and chemical structure in solids and surfaces. For a long time, the dipole approximation has been the basis in the study of the photoelectron angular distribution, but with the progress of light source, such as the fourth generation synchrotron facilities, more and more attention is paid to the non-dipole effect of the photoelectron angular distribution. In thispresent work, the photoionization processes of sodium-like ions (20Z92) are studied for the different incident photon energies based on the multiconfiguration Dirac-Fock method and the density matrix theory. The influences of the non-dipole terms on the photoelectron angular distributions, which arise from the multipole expansion of the electron-photon interaction, are discussed in detail. The relationship between the dipole and non-dipole parameters of the photoelectron angular distribution along with the atomic number is given. It is found that the influence of non-dipole terms on the photoelectron angular distribution is related to the incident photon energy and the atomic number of the target ion and the subshell of the ionized electron. In general, the influences of the non-dipole terms on the photoelectron angular distribution of p subshell are larger than those of the s subshell. In the electric dipole approximation, the s subshell photoelectron angular distribution is nearly independent of the photon energy and nuclear charge number, but this situation is not for the p subshell. With the increase of photon energy, an abnormal angular distribution is found for the p subshell photoelectron. However, if the non-dipole effects are included, the abnormal photoelectron angular distribution of p subshell disappears and the photoelectron distribution has maximum values respectively near 45o and 135o with respect to the polarization vector of incident light, that is, the photoelectron distribution has an obvious forward scattering characteristic.
      Corresponding author: Ma Kun, makun@hsu.edu.cn;dongcz@nwnu.edu.cn ; Dong Chen-Zhong, makun@hsu.edu.cn;dongcz@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11274254,U1332206,U1331122,11464042,11564036),the Key Project for Young Talents in College of Anhui Province,China (Grant No.gxyqZD2016301),the Natural Science Research Project of Anhui Province,China (Grant No.KJHS2015B01),and the Natural Science Research Project of Huangshan University,China (Grant No.2016xskq003).
    [1]

    Jablonski A, Powell C J 2015 J. Electron Spectrosc. Relat. Phenom. 199 27

    [2]

    Ricz S, Buhr T, Kövér á, Holste K, Borovik A, Schippers S, Varga D, Müller A 2014 Phys. Rev. A 90 013410

    [3]

    Ma K, Dong C Z, Xie L Y, Qu Y Z 2014 Chin. Phys. Lett. 31 103201

    [4]

    Ma K, Dong C Z, Xie L Y, Ding X B, Qu Y Z 2014 Chin. Phys. Lett. 31 053201

    [5]

    Guillemin R, Hemmers O, Lindle D W, Manson S T 2006 Radiat. Phys. Chem. 75 2258

    [6]

    Schmidt V 1992 Rep. Prog. Phys. 55 1483

    [7]

    Krässig B, Jung M, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1995 Phys. Rev. Lett. 75 4736

    [8]

    Jung M, Krässig B, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1996 Phys. Rev. A 54 2127

    [9]

    Hemmers O, Fisher G, Glans P, Hansen D L, Wang H, Whitfield S B, Wehlitz R, Levin J C, Sellin I A, Perera R C C, Dias E W B, Chakraborty H S, Deshmukh P C, Manson S T, Lindle D W 1997 J. Phys. B 30 L727

    [10]

    Holste K, Borovik A A, Buhr T, Ricz S, Kövér á, Bernhardt D, Schippers S, Varga D, Müller A 2014 J. Phys. Confer. Ser. 488 022041

    [11]

    Ma K, Xie L Y, Zhang D H, Dong C Z 2015 Chin. Phys. B 24 073402

    [12]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [13]

    Grant I P 1970 Adv. Phys. 19 747

    [14]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [15]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525

    [16]

    Ma K, Xie L Y, Zhang D H, Dong C Z, Qu Y Z 2016 Acta Phys. Sci. 65 083201 (in Chinese)[马堃, 颉录有, 张登红, 董晨钟, 屈一至 2016 物理学报 65 083201]

    [17]

    Blum K 2012 Density Matrix Theory and Applications (Vol. 3) (Berlin:Springer) pp61-162

    [18]

    Balashov V V, Grum-Grahimailo A N, Kabachnik N M 2000 Polarization and Correlation in Atomic Collisions (New York:Kluwer Academic/Plenum) pp45-97

    [19]

    Rose M E 1957 Elementary Theory of Angular Momentum (New York:Wiley) pp32-94

    [20]

    Derevianko A, Hemmers O, Oblad S, Glans P, Wang H, Whitfield B, Wehlitz R, Sellin I A, Johnson W R, Lindle D W 2000 Phys. Rev. Lett. 84 2116

    [21]

    Jablonski A 2013 J. Electron Spectrosc. Relat. Phenom. 189 81

    [22]

    Scofield J H 1989 Phys. Rev. A 40 3054

  • [1]

    Jablonski A, Powell C J 2015 J. Electron Spectrosc. Relat. Phenom. 199 27

    [2]

    Ricz S, Buhr T, Kövér á, Holste K, Borovik A, Schippers S, Varga D, Müller A 2014 Phys. Rev. A 90 013410

    [3]

    Ma K, Dong C Z, Xie L Y, Qu Y Z 2014 Chin. Phys. Lett. 31 103201

    [4]

    Ma K, Dong C Z, Xie L Y, Ding X B, Qu Y Z 2014 Chin. Phys. Lett. 31 053201

    [5]

    Guillemin R, Hemmers O, Lindle D W, Manson S T 2006 Radiat. Phys. Chem. 75 2258

    [6]

    Schmidt V 1992 Rep. Prog. Phys. 55 1483

    [7]

    Krässig B, Jung M, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1995 Phys. Rev. Lett. 75 4736

    [8]

    Jung M, Krässig B, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1996 Phys. Rev. A 54 2127

    [9]

    Hemmers O, Fisher G, Glans P, Hansen D L, Wang H, Whitfield S B, Wehlitz R, Levin J C, Sellin I A, Perera R C C, Dias E W B, Chakraborty H S, Deshmukh P C, Manson S T, Lindle D W 1997 J. Phys. B 30 L727

    [10]

    Holste K, Borovik A A, Buhr T, Ricz S, Kövér á, Bernhardt D, Schippers S, Varga D, Müller A 2014 J. Phys. Confer. Ser. 488 022041

    [11]

    Ma K, Xie L Y, Zhang D H, Dong C Z 2015 Chin. Phys. B 24 073402

    [12]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [13]

    Grant I P 1970 Adv. Phys. 19 747

    [14]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [15]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525

    [16]

    Ma K, Xie L Y, Zhang D H, Dong C Z, Qu Y Z 2016 Acta Phys. Sci. 65 083201 (in Chinese)[马堃, 颉录有, 张登红, 董晨钟, 屈一至 2016 物理学报 65 083201]

    [17]

    Blum K 2012 Density Matrix Theory and Applications (Vol. 3) (Berlin:Springer) pp61-162

    [18]

    Balashov V V, Grum-Grahimailo A N, Kabachnik N M 2000 Polarization and Correlation in Atomic Collisions (New York:Kluwer Academic/Plenum) pp45-97

    [19]

    Rose M E 1957 Elementary Theory of Angular Momentum (New York:Wiley) pp32-94

    [20]

    Derevianko A, Hemmers O, Oblad S, Glans P, Wang H, Whitfield B, Wehlitz R, Sellin I A, Johnson W R, Lindle D W 2000 Phys. Rev. Lett. 84 2116

    [21]

    Jablonski A 2013 J. Electron Spectrosc. Relat. Phenom. 189 81

    [22]

    Scofield J H 1989 Phys. Rev. A 40 3054

  • [1] Ge Di, Zhao Guo-Peng, Qi Yue-Ying, Chen Chen, Gao Jun-Wen, Hou Hong-Sheng. Influence of relativistic effects on photoionization process of hydrogen-like ions in plasma environment. Acta Physica Sinica, 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [2] Zhao Ting, Gong Maomao, Zhang Song Bin. Theoretical study on the photo-ionization of helium atoms by Bessel vortex light. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [3] Lei Jian-Ting, Yu Xuan, Shi Guo-Qiang, Yan Shun-Cheng, Sun Shao-Hua, Wang Quan-Jun, Ding Bao-Wei, Ma Xin-Wen, Zhang Shao-Feng, Ding Jing-Jie. Photoionization of Ne and Xe atoms induced by extreme ultraviolet photons. Acta Physica Sinica, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [4] Ma Kun, Zhu Lin-Fan, Xie Lu-You. Non-dipole effects on angular distribution of photoelectrons in sequential two-photon double ionization of Ar atom and K+ ion. Acta Physica Sinica, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [5] Zhou Yi-Fan, Yang Mu-Zi, She Feng-Quan, Gong Li, Zhang Xiao-Qi, Chen Jian, Song Shu-Qin, Xie Fang-Yan. Application of X-ray photoelectron spectroscopy to study interfaces for solid-state lithium ion battery. Acta Physica Sinica, 2021, 70(17): 178801. doi: 10.7498/aps.70.20210180
    [6] Ma Kun, Xie Lu-You, Dong Chen-Zhong. Theoretical calculations on photoelectron angular distribution of sequential two-photon double ionization for Ar atom. Acta Physica Sinica, 2020, 69(5): 053201. doi: 10.7498/aps.69.20191814
    [7] Zhou Yue, Hu Zhi-Yuan, Bi Da-Wei, Wu Ai-Min. Progress of radiation effects of silicon photonics devices. Acta Physica Sinica, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [8] Ma Kun, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong, Qu Yi-Zhi. Theoretical calculation of the photoelectron angular distribution of neon. Acta Physica Sinica, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [9] Wang Jin-Xia, Shi Ying-Long, Zhang Deng-Hong, Xie Lu-You, Dong Chen-Zhong. Theoretical study on angular distribution and polarization characteristics of X-ray emission following dielectronic recombination of lithium-like ions. Acta Physica Sinica, 2013, 62(23): 233401. doi: 10.7498/aps.62.233401
    [10] Han Lu-Hui, Zhang Chong-Hong, Zhang Li-Qing, Yang Yi-Tao, Song Yin, Sun You-Mei. X-ray photoelectron spectroscopy study on GaN crystal irradiated by slow highly charged ions. Acta Physica Sinica, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [11] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [12] Zhu Jing-Jing, Gou Bing-Cong. Electron correlation effects of the highly-doubly-excited resonances for He-like ions. Acta Physica Sinica, 2009, 58(8): 5285-5290. doi: 10.7498/aps.58.5285
    [13] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [14] Li Xiao-Wei, Li Xin-Zheng, Jiang Xiao-Li, Yu Wei, Tian Xiao-Dong, Yang Shao-Peng, Fu Guang-Sheng. The electron trap effect of the sulfur + gold sensitization center on the photoelectron behaviors. Acta Physica Sinica, 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
    [15] QI JING-BO, CHEN CHONG-YANG, WANG YAN-SEN. ELECTRON IMPACT IONIZATION CROSS SECTIONS FOR THE Na-LIKE IONS. Acta Physica Sinica, 2001, 50(8): 1475-1480. doi: 10.7498/aps.50.1475
    [16] FENG JIAN, GAO XUE-YAN. DESTRUCTION OF PEAK SWITCHING IN STRONG-FIELD AUTOIONIZATION PHOTOELECTRON SPECTRA. Acta Physica Sinica, 1993, 42(6): 886-892. doi: 10.7498/aps.42.886
    [17] LI SHI-PU, FAN DONG-HUI, WANG GUO-MEI, XING NING, REN WEI. X-RAY PHOTOELECTRON SPECTROSCOPY STUDY OF Fe ION IMPLANTED POLYCRYSTALLINE Al2O3. Acta Physica Sinica, 1991, 40(6): 857-861. doi: 10.7498/aps.40.857
    [18] WU BAI-MEI, CHEN ZHAO-JIA, BAO SHI-NING, BAO DE-SONG, JI ZHEN-GUO, LIU GU. UPS STUDIES OF Nb-Ni GLASSES DURING CRYSTALLIZATION. Acta Physica Sinica, 1989, 38(4): 675-678. doi: 10.7498/aps.38.675
    [19] YAO GUAN-HUA, XU ZHI-ZHAN. PEAK-SWITCHING OF THE PHOTOELECTRON SPECTRUM. Acta Physica Sinica, 1989, 38(5): 864-868. doi: 10.7498/aps.38.864
    [20] WU CHUAN-TEH. INITIAL ENERGY DISTRIBUTION AND ANGULAR DISTRIBUTION OF PHOTOELECTRONS. Acta Physica Sinica, 1958, 14(2): 139-152. doi: 10.7498/aps.14.139
Metrics
  • Abstract views:  6029
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2016
  • Accepted Date:  24 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回